

    
      
          
            
  
NestedText: A Human Friendly Data Format

[image: _images/master.svg]
 [https://travis-ci.org/KenKundert/nestedtext][image: _images/nestedtext.svg]
 [https://coveralls.io/r/KenKundert/nestedtext][image: _images/nestedtext1.svg]
 [https://pypi.python.org/pypi/nestedtext][image: _images/nestedtext2.svg]
 [https://pypi.python.org/pypi/nestedtext]
Authors: Ken & Kale Kundert

Version: 1.0.0

Released: 2020-10-03

Please post all questions, suggestions, and bug reports to
NestedText Github [https://github.com/KenKundert/nestedtext/issues].






NestedText is a file format for holding data that is to be entered, edited, or
viewed by people.  It allows data to be organized into a nested collection of
dictionaries, lists, and strings.  In this way it is similar to JSON and
YAML, but without the complexity and risk of YAML and without the syntatic
clutter of JSON.  NestedText is both simple and natural. Only a small number
of concepts and rules must be kept in mind when creating it.
It is easily created, modified, or viewed with a text editor and easily
understood and used by both programmers and non-programmers.

NestedText is convenient for configuration files, address books, account
information and the like.  Here is an example of a file that contains a few
addresses:

# Contact information for our officers

president:
    name: Katheryn McDaniel
    address:
        > 138 Almond Street
        > Topika, Kansas 20697
    phone:
        cell: 1-210-555-5297
        home: 1-210-555-8470
            # Katheryn prefers that we always call her on her cell phone.
    email: KateMcD@aol.com
    additional roles:
        - board member

vice president:
    name: Margaret Hodge
    address:
        > 2586 Marigold Lane
        > Topika, Kansas 20682
    phone: 1-470-555-0398
    email: margaret.hodge@uk.edu
    additional roles:
        - new membership task force
        - accounting task force

treasurer:
    name: Fumiko Purvis
        # Fumiko's term is ending at the end of the year.
        # She will be replaced by Merrill Eldridge.
    address:
        > 3636 Buffalo Ave
        > Topika, Kansas 20692
    phone: 1-268-555-0280
    email: fumiko.purvis@hotmail.com
    additional roles:
        - accounting task force





The format holds dictionaries (ordered collections of name/value pairs), lists
(ordered collections of values) and strings (text) organized hierarchically to
any depth.  Indentation is used to indicate the hierarchy of the data, and
a simple natural syntax is used to distinguish the types of data in such
a manner that it is not easily confused.  Specifically, lines that begin with
a word or words followed by a colon are dictionary items; a dash introduces list
items, and a leading greater-than symbol signifies a line in a multiline string.
Dictionaries and lists are used for nesting, the leaf values are always strings.


Alternatives

There are no shortage of well established alternatives to NestedText for
storing data in a human-readable text file. Probably the most obvious are json [https://docs.python.org/3/library/json.html] and YAML [https://pyyaml.org/wiki/PyYAMLDocumentation].  Both have serious short
comings.

JSON is a subset of JavaScript suitable for holding data. Like NestedText,
it consists of a hierarchical collection of dictionaries, lists, and strings,
but also allows integers, floats, Booleans and nulls.  The problem with JSON
for this application is that it is awkward.  With all those data types it must
syntactically distinguish between them.  For example, in JSON 32 is an
integer, 32.0 is the real version of 32, and “32” is the string version. These
distinctions are not meaningful and can be confusing to non-programmers. In
addition, in most datasets a majority of leaf values are strings and the
required quotes adds substantial visual clutter.  NestedText avoids these
issues by treating all leaf values as strings with no need for quoting or
escaping.  It is up to the application that employs NestedText as an input
format to sort things out later.

JSON does not provide for multiline strings and any special characters like
newlines or unicode are encoded with escape codes, which can make strings quite
difficult to interpret.  Finally, dictionary and list items must be separated
with commas, but a comma must not follow last item.  All of this results in
JSON being a frustrating format for humans to read, enter or edit.

NestedText has the following clear advantages over JSON as human readable
and writable data file format:


	text does not require quotes


	data type does not change based on seemingly insignificant details (32, 32.0, “32”)


	comments


	multiline strings


	special characters without escaping them


	Unicode characters without encoding them


	commas are not used to separate dictionary and list items




YAML was to be the human friendly alternative to JSON, but the authors were
too ambitious and tried to support too many data types and too many formats. To
distinguish between all the various types and formats, a complicated and
non-intuitive set of rules developed.  For example, 2 is interpreted as an
integer, 2.0 as a real number, and both 2.0.0 and “2” are strings.  YAML at
first appears very appealing when used with simple examples, but things can
quickly become complicated or provide unexpected results.  A reaction to this is
the use of YAML subsets, such as StrictYAML [https://hitchdev.com/strictyaml].  However, the subsets still try to maintain
compatibility with YAML and so inherit much of its complexity. For example,
both YAML and StrictYAML support the nine different ways to write
multi-line strings in YAML [http://stackoverflow.com/a/21699210/660921].

YAML recognized the problems that result from JSON needing to unambiguously
distinguish between many data types and instead uses implicit typing, which
creates its own problems [https://hitchdev.com/strictyaml/why/implicit-typing-removed].
For example, consider the following YAML fragment:

Enrolled: NO
Country Code: NO





Presumably Enrolled is meant to be a Boolean value whereas Country Code is
meant to be a string (NO is the country code for Norway). Reading this
fragment with YAML results in {‘Enrolled’: False, ‘Country Code’: False}.
When read by NestedText both values are retained in their original form as
strings.  With NestedText any decisions about how to interpret the leaf values
are passed to the end application, which is the only place where they can be
made knowledgeably.  The assumption is that the end application knows that
Enrolled should be a Boolean and knows how to convert ‘NO’ to False.  The
same is not possible with YAML because the Country Code value has been
transformed and because there are many possible strings that map to False
(n, no, false, off; etc.).

This is one example of the many possible problems that stem from implicit
typing.  In fact, many people make it a habit to add quotes to all values simply
to avoid the ambiguities, which makes YAML more like JSON.

NestedText was inspired by YAML, but eschews its complexity. It has the
following clear advantages over YAML as human readable and writable data file
format:


	simple


	unambiguous (no implicit typing)


	data type does not change based on seemingly insignificant details (2, 2.0, 2.0.0, “2”)


	syntax is insensitive to special characters within text


	safe, no risk of malicious code execution







Issues

Please ask questions or report problems on Github [https://github.com/KenKundert/nestedtext/issues].




Contributing

This package contains a Python reference implementation of NestedText.
Implementation in many languages is required for NestedText to catch on widely.
If you like the format, please consider contributing additional implementations.


Getting started


	Installation

	Basic syntax

	Basic use

	Structure parser

	Examples

	Common mistakes






Reference


	File format

	Python API






	Index










            

          

      

      

    

  

    
      
          
            
  
Installation

pip3 install --user nestedtext






Releases


	Latest development release:
	
Version: 1.0.0

Released: 2020-10-03





	0.6 (2020-09-26):
	
	Added load() and dump().


	Eliminated NestedTextError.get_extended_codicil.






	0.5 (2020-09-11):
	
	allow user to manage duplicate keys detected by loads().






	0.4 (2020-09-07):
	
	Change rest-of-line strings to include all characters given, including
leading and trailing quotes and spaces.


	The NestedText top-level is no longer restricted to only dictionaries
and lists. The top-level can now also be a single string.


	loads() now returns None when given an empty NestedText document.


	Change NestedTextError attribute names to make them more consistent
with those used by JSON package.


	Added NestedTextError.get_extended_codicil.






	0.3 (2020-09-03):
	
	Allow comments to be indented.






	0.2 (2020-09-02):
	
	Minor enhancements and bug fixes.






	0.1 (2020-08-30):
	
	Initial release.














            

          

      

      

    

  

    
      
          
            
  
Basic syntax

This is a overview of the syntax of a NestedText document, which consists of
a nested collection of dictionaries,
lists, and strings.  You can find more specifics
later on.


Dictionaries


A dictionary is a collection of name/value pairs:

name 1: value 1
name 2: value 2
...





A dictionary item is introduced by a key (the name) and a colon at the start
of a line.  Anything that follows the space after the colon is the value and
is treated as a string.

The key is a string and must be quoted if it contains characters that could
be misinterpreted.

A dictionary is all adjacent dictionary items at the same indentation
level.







Lists


A list is a collection of simple values:

- value 1
- value 2
...





A list item is introduced with a dash at the start of a line.  Anything that
follows the space after the dash is the value and is treated as a string.

A list is all adjacent list items at the same indentation level.







Strings


The values described in the last two sections are all rest-of-line strings;
they end at the end of the line.  Rest-of-line strings are simply all the
remaining characters on the line.  They can contain any character other than
newline:

regex: [+-]?([0-9]*[.])?[0-9]+
math: -b + sqrt(b**2 - 4*a*c)
unicode: José and François





It is also possible to specify strings that are alone on a line and they can
be combined to form multiline strings. To do so, precede the line with
a greater-than symbol:

>     this is the first line of a multiline string, it is indented.
> this is the second line, it is not indented.





The content of each line starts after the space that follows the
greater-than symbol.

You can include empty lines in the string simply by specifying the
greater-than symbol alone on a line:

>
> The future ain’t what it used to be.
>
>                    - Yogi Berra
>











Comments


Lines that begin with a hash as the first non-space character, or lines that
are empty or consist only of spaces and tabs are ignored.  Indentation is
not significant on comment lines.

# this line is ignored











Nesting

A value for a dictionary or list item may be a rest-of-line string as shown
above, or it may be a nested dictionary, list or a multiline string.
Indentation is used to indicate nesting (or composition).  Indentation increases
to indicate the beginning of a new nested object, and indentation returns to
a prior level to indicate its end.  In this way, data can be nested to an
arbitrary depth:

# Contact information for our officers

president:
    name: Katheryn McDaniel
    address:
        > 138 Almond Street
        > Topika, Kansas 20697
    phone:
        cell: 1-210-555-5297
        home: 1-210-555-8470
            # Katheryn prefers that we always call her on her cell phone.
    email: KateMcD@aol.com
    kids:
        - Joanie
        - Terrance

vice president:
    name: Margaret Hodge
    address:
        > 2586 Marigold Land
        > Topika, Kansas 20697
    phone: 1-470-555-0398
    email: margaret.hodge@uk.edu
    kids:
        - Arnie
        - Zach
        - Maggie





It is recommended that each level of indentation be represented by a consistent
number of spaces (with the suggested number being 2 or 4). However, it is not
required. Any increase in the number of spaces in the indentation represents an
indent and and the number of spaces need only be consistent over the length of
the nested object.







            

          

      

      

    

  

    
      
          
            
  
Basic use

The NestedText API is patterned after that of JSON.


NestedText Reader

The loads() function is used to convert NestedText into a Python data
structure.  If there is a problem interpreting the input text,
a NestedTextError exception is raised.

>>> import nestedtext as nt

>>> content = """
... access key id: 8N029N81
... secret access key: 9s83109d3+583493190
... """

>>> try:
...     data = nt.loads(content)
... except nt.NestedTextError as e:
...     e.terminate()

>>> print(data)
{'access key id': '8N029N81', 'secret access key': '9s83109d3+583493190'}





You can also read directly from a file or stream using the load()
function.

>>> from inform import fatal, os_error

>>> try:
...     groceries = nt.load('examples/groceries.nt')
... except nt.NestedTextError as e:
...     e.terminate()
... except OSError as e:
...     fatal(os_error(e))

>>> print(groceries)
['Bread', 'Peanut butter', 'Jam']








NestedText Writer

The dumps() function is used to convert a Python data structure into
NestedText.  As before, if there is a problem converting the input data,
a NestedTextError exception is raised.

>>> try:
...     content = nt.dumps(data)
... except nt.NestedTextError as e:
...     e.terminate()

>>> print(content)
access key id: 8N029N81
secret access key: 9s83109d3+583493190





The dump() function writes NestedText to a file or stream.

>>> try:
...     content = nt.dump(data, 'examples/access.nt')
... except nt.NestedTextError as e:
...     e.terminate()
... except OSError as e:
...     fatal(os_error(e))











            

          

      

      

    

  

    
      
          
            
  
Structure parser

Parsing data can be a difficult challenge. One way to reduce the challenge is to
reduce the scope of what is being parsed. With NestedText you can delegate the
parsing the of the structure and instead focus on parsing individual values
given as strings.  A transforming validator like Voluptuous [https://github.com/alecthomas/voluptuous] can greatly simply the process.

To use Voluptuous you would create a schema and then apply the schema
to the data. The schema details what fields are expected, and what what
kind of values they should contain. Normally the schema is used to
validate the data, but with a little extra plumbing the data can be
transformed to the needed form.  The following is a very simple example
(see cryptocurrency holdings for a more
complete example).

In order for Voluptuous to convert the data to the desired type, a
converter function is helpful:

>>> import voluptuous

>>> def coerce(type, msg=None):
...     """Coerce a value to a type.
...
...     If the type constructor throws a ValueError, the value will be
...     marked as Invalid.
...     """
...     def f(v):
...         try:
...             return type(v)
...         except ValueError:
...             raise voluptuous.Invalid(msg or ('expected %s' % type.__name__))
...     return f





The next step is to define a schema that declares the expected types of
the various fields in the configuration file. For example, imagine the
configuration file has has three values, name, value, and
editable, the first of which must be a string, the second a float,
and the third a boolean that is specified using either ‘yes’ or ‘no’.
This can be done as follows:

>>> import nestedtext as nt

>>> def to_bool(v):
...     try:
...         v = v.lower()
...         assert v in ['yes', 'no']
...         return v == 'yes'
...     except:
...         raise ValueError("expected 'yes' or 'no'.")

>>> config = """
... name: volume
... value: 50
... editable: yes
... """

>>> config_data = nt.loads(config)
>>> print(config_data)
{'name': 'volume', 'value': '50', 'editable': 'yes'}

>>> schema = voluptuous.Schema(
...     dict(name=str, value=coerce(float), editable=coerce(to_bool))
... )

>>> settings = schema(config_data)
>>> print(settings)
{'name': 'volume', 'value': 50.0, 'editable': True}





Notice that a dictionary that contains the expected types and
conversion functions is passed to Schema. Then the raw configuration
is parsed for structure by NestedText, and the resulting data
structure is processed by the schema to and converted to its final form.





            

          

      

      

    

  

    
      
          
            
  
Examples


JSON to NestedText

This example implements a command-line utility that converts a JSON file to
NestedText.  It demonstrates the use of dumps() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a JSON file and convert it to NestedText.

usage:
    json-to-nestedtext [options] [<filename>]

options:
    -f, --force            force overwrite of output file
    -i <n>, --indent <n>   number of spaces per indent [default: 4]

If <filename> is not given, json input is taken from stdin and NestedText output 
is written to stdout.
"""

from docopt import docopt
from inform import fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:
    indent = int(cmdline['--indent'])
except Exception:
    warn('indent garbled.', culprit=cmdline['--indent'])
    indent = 4

try:
    # read JSON content; from file or from stdin
    if input_filename:
        input_path = Path(input_filename)
        json_content = input_path.read_text(encoding='utf-8')
    else:
        json_content = sys.stdin.read()
    data = json.loads(json_content)

    # convert to NestedText
    nestedtext_content = nt.dumps(data, indent=indent) + "\n"

    # output NestedText content; to file or to stdout
    if input_filename:
        output_path = input_path.with_suffix('.nt')
        if output_path.exists():
            if not cmdline['--force']:
                fatal('file exists, use -f to force over-write.', culprit=output_path)
        output_path.write_text(nestedtext_content, encoding='utf-8')
    else:
        sys.stdout.write(nestedtext_content)
except OSError as e:
    fatal(os_error(e))
except nt.NestedTextError as e:
    e.terminate(culprit=input_filename)
except json.JSONDecodeError as e:
    # create a nice error message with surrounding context
    msg = e.msg
    culprit = input_filename
    codicil = None
    try:
        lineno = e.lineno
        culprit = (culprit, lineno)
        colno = e.colno
        lines_before = e.doc.split('\n')[lineno-2:lineno]
        lines = []
        for i, l in zip(range(lineno-len(lines_before), lineno), lines_before):
            lines.append(f'{i+1:>4}> {l}')
        lines_before = '\n'.join(lines)
        lines_after = e.doc.split('\n')[lineno:lineno+1]
        lines = []
        for i, l in zip(range(lineno, lineno + len(lines_after)), lines_after):
            lines.append(f'{i+1:>4}> {l}')
        lines_after = '\n'.join(lines)
        codicil = f"{lines_before}\n     {colno*' '}▲\n{lines_after}"
    except Exception:
        pass
    fatal(full_stop(msg), culprit=culprit, codicil=codicil)








NestedText to JSON

This example implements a command-line utility that converts a NestedText file
to JSON.  It demonstrates the use of loads() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a NestedText file and convert it to JSON.

usage:
    nestedtext-to-json [options] [<filename>]

options:
    -f, --force   force overwrite of output file
    -d, --dedup   de-duplicate keys in dictionaries

If <filename> is not given, NestedText input is taken from stdin and JSON output 
is written to stdout.
"""

from docopt import docopt
from inform import fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')


def de_dup(key, value, data, state):
    if key not in state:
        state[key] = 1
    state[key] += 1
    return f"{key}#{state[key]}"


cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
on_dup = de_dup if cmdline['--dedup'] else None

try:
    if input_filename:
        input_path = Path(input_filename)
        data = nt.load(input_path, on_dup=de_dup)
        json_content = json.dumps(data, indent=4)
        output_path = input_path.with_suffix('.json')
        if output_path.exists():
            if not cmdline['--force']:
                fatal('file exists, use -f to force over-write.', culprit=output_path)
        output_path.write_text(json_content, encoding='utf-8')
    else:
        data = nt.load(sys.stdin, on_dup=de_dup)
        json_content = json.dumps(data, indent=4)
        sys.stdout.write(json_content)
except OSError as e:
    fatal(os_error(e))
except nt.NestedTextError as e:
    e.terminate()








Cryptocurrency holdings

This example implements a command-line utility that displays the current value
of cryptocurrency holdings.  The program starts by reading a settings file held
in ~/.config/cc that in this case holds:

holdings:
    - 5 BTC
    - 50 ETH
    - 50,000 XLM
currency: USD
date format: h:mm A, dddd MMMM D
screen width: 90





This file, of course, is in NestedText format.  After being read by
loads() it is processed by a Voluptuous [https://github.com/alecthomas/voluptuous] schema that does some checking on
the form of the values specified and then converts the holdings to a list of
QuantiPhy [https://quantiphy.readthedocs.io] quantities and the screen width
to an integer.  The latest prices are then downloaded from cryptocompare [https://www.cryptocompare.com], the value of the holdings are computed, and
then displayed. The result looks like this:

Holdings as of 11:18 AM, Wednesday September 2.
5 BTC = $56.8k @ $11.4k/BTC    68.4% ████████████████████████████████████▏
50 ETH = $21.7k @ $434/ETH     26.1% █████████████▊
50 kXLM = $4.6k @ $92m/XLM     5.5%  ██▉
Total value = $83.1k.





And finally, the code:

#!/usr/bin/env python3

from appdirs import user_config_dir
import nestedtext as nt
from voluptuous import Schema, Required, All, Length, Invalid
from inform import display, fatal, is_collection, os_error, render_bar
import arrow
import requests
from quantiphy import Quantity
from pathlib import Path

# configure preferences
Quantity.set_prefs(prec=2, ignore_sf = True)
currency_symbols = dict(USD='$', EUR='€', JPY='¥', GBP='£')

# utility functions
def coerce(type):
    def f(value):
        try:
            if is_collection(value):
                return [type(each) for each in value]
            return type(value)
        except ValueError:
            raise Invalid(f'expected {type.__name__}, found {v.__class__.__name__}')
    return f

try:
    # read settings
    settings_file = Path(user_config_dir('cc'), 'settings')
    settings_schema = Schema({
        Required('holdings'): All(coerce(Quantity), Length(min=1)),
        'currency': str,
        'date format': str,
        'screen width': coerce(int)
    })
    settings = settings_schema(nt.load(settings_file))
    currency = settings.get('currency', 'USD')
    currency_symbol = currency_symbols.get(currency, currency)
    screen_width = settings.get('screen width', 80)

    # download latest asset prices from cryptocompare.com
    params = dict(
        fsyms = ','.join(coin.units for coin in settings['holdings']),
        tsyms = currency,
    )
    url = 'https://min-api.cryptocompare.com/data/pricemulti'
    try:
        r = requests.get(url, params=params)
        if r.status_code != requests.codes.ok:
            r.raise_for_status()
    except Exception as e:
        raise Error('cannot access cryptocurrency prices:', codicil=str(e))
    prices = {k: Quantity(v['USD'], currency_symbol) for k, v in r.json().items()}

    # compute total
    total = Quantity(0, currency_symbol)
    for coin in settings['holdings']:
        price = prices[coin.units]
        value = price.scale(coin)
        total = total.add(value)

    # display holdings
    now = arrow.now().format(settings.get('date format', 'h:mm A, dddd MMMM D, YYYY'))
    print(f'Holdings as of {now}.')
    bar_width = screen_width - 37
    for coin in settings['holdings']:
        price = prices[coin.units]
        value = price.scale(coin)
        portion = value/total
        summary = f'{coin} = {value} @ {price}/{coin.units}'
        print(f'{summary:<30} {portion:<5.1%} {render_bar(portion, bar_width)}')
    print(f'Total value = {total}.')

except nt.NestedTextError as e:
    e.terminate()
except Invalid as e:
    fatal(e)
except OSError as e:
    fatal(os_error(e))
except KeyboardInterrupt:
    pass











            

          

      

      

    

  

    
      
          
            
  
Common mistakes

When loads() complains of errors it is important to look both at the
line fingered by the error message and the one above it.  The line that is the
target of the error message might by an otherwise valid NestedText line if it
were not for the line above it.  For example, consider the following example:

Example:

>>> import nestedtext as nt

>>> content = """
... treasurer:
...     name: Fumiko Purvis
...     address: Home
...         > 3636 Buffalo Ave
...         > Topika, Kansas 20692
... """

>>> try:
...     data = nt.loads(content)
... except nt.NestedTextError as e:
...     print(e.get_message())
...     print(e.get_codicil()[0])
invalid indentation.
   4 «    address: Home»
   5 «        > 3636 Buffalo Ave»
          ▲





Notice that the complaint is about line 5, but problem stems from line 4 where
Home gave a value to address. With a value specified for address, any
further indentation on line 5 indicates a second value is being specified for
address, which is illegal.

A more subtle version of this same error follows:

Example:

>>> content = """
... treasurer:
...     name: Fumiko Purvis
...     address:␣␣
...         > 3636 Buffalo Ave
...         > Topika, Kansas 20692
... """

>>> try:
...     data = nt.loads(content.replace('␣␣', '  '))
... except nt.NestedTextError as e:
...     print(e.get_message())
...     print(e.get_codicil()[0])
invalid indentation.
   4 «    address:  »
   5 «        > 3636 Buffalo Ave»
          ▲





Notice the ␣␣ that follows address in content.  These are replaced by
2 spaces before content is processed by loads.  Thus, in this case there is
an extra space at the end of line 4.  Anything beyond the ‘: ‘ is considered the
value for address, and in this case that is the single extra space specified
at the end of the line.  This extra space is taken to be the value of address,
making the multiline string in lines 5 and 6 a value too many.





            

          

      

      

    

  

    
      
          
            
  
File format

The NestedText format follows a small number of simple rules. Here they are.

Encoding:


A NestedText document encoded in UTF-8.




Line types:


Each line in a NestedText document is assigned one of the following types:
comment, blank, list-item, dict-item, and string-item.  Any line
that does not fit one of these types is an error.




Comments:


Comments are lines that have # as the first non-space character on the
line.  Comments are ignored.




Blank lines:


Blank lines are lines that are empty or consist only of white space
characters (spaces or tabs).  Blank lines are also ignored.




Line-type tags:


The remaining lines are identifying by which one of these ASCII characters
are found in an unquoted portion of the line: dash (‘-‘), colon (‘:’), or
greater-than symbol (‘>’) when followed immediately by a space or newline.
Once the first of one of these pairs has been found in the unquoted portion
of the line, any subsequent occurrences of any of the line-type tags are
treated as simple text.  For example:

- And the winner is: {winner}





In this case the leading ‘- ‘ determines the type of the line and the ‘:
‘ is simply treated as part of the remaining text on the line.




String items:


If the first non-space character on a line is a greater-than symbol followed
immediately by a space (‘>␣’) or a newline, the line is a string-item.
Adjacent string-items with the same indentation level are combined into
a multiline string with their order being retained.  Any leading white space
that follows the space that follows the greater-than symbol is retained, as
is any trailing white space.




List items:


If the first non-space character on a line is a dash followed immediately by
a space (‘-␣’) or a newline, the line is a list-item.  Adjacent list-items
with the same indentation level are combined into a list with their order
being retained.  Each list-item has a single associated value.




Dictionary items:


If the line is not a string-item or a list item and it contains a colon
followed by either a space (‘:␣’) that does not fall within a quoted key or
is followed by a newline, the line is considered a dict-item.  Adjacent
dict-items with the same indentation level are combined into a dictionary
with their order being retained.  Each dict-item consists of a key, the
colon, and a value.  A key must be a string, it must not contain a newline,
and it must be quoted if it starts with a line-type or string-type tag or it
contains a dict-item tag or if it is delimited by matching quote characters
or has leading or trailing spaces.  A key is quoted by delimiting it with
matching single or double quote characters. Double quotes are used if the
key contains a single quote character and a single quotes are used if the
key contains a double quote character.  A key that requires quoting must not
contain both single and double quote characters.




Values:


The value associated with a list and dict item may take one of three forms.

If the line contains further text (characters after the dash-space or
colon-space), then the value is that text.

If there is no further text on the line and the next line has greater
indentation, then the next line holds the value, which may be a list,
a dictionary, or a multiline string.

Otherwise the value is empty; it is taken to be an empty string.

String values may contain any printing UTF-8 character.




Indentation:


An increase in the number of spaces in the indentation signifies the start
of a nested object.  Indentation must return to a prior level when the
nested object ends.

Each level of indentation need not employ the same number of additional
spaces, though it is recommended that you choose either 2 or 4 spaces to
represent a level of nesting and you use that consistently throughout the
document.  However, this is not required. Any increase in the number of
spaces in the indentation represents an indent and a decrease to return to
a prior indentation represents a dedent.

An indent may only follow a list-item or dict-item that does not have
a value on the same line.

Only spaces are allowed in the indentation. Specifically, tabs are not
allowed.




Empty document:


A document may be empty. A document is empty if it consists only of
comments and blank lines.




Result:


When a document is converted from NestedText the result takes one of the
following forms:


	None:
	The document is empty.



	String:
	The document consists of a single multiline string



	List:
	The top-level of the document is a list.
Each value of the list may be a string, list, or a dictionary.
The nesting of lists and dictionaries may be arbitrarily deep but the
leaf values are all strings as are all keys in all dictionaries.



	Dictionary:
	The top-level of the document is a dictionary.  Each value may be
a string, list, or a dictionary.  The nesting of lists and dictionaries
may be arbitrarily deep but the leaf values are all strings as are all
keys in all dictionaries.












            

          

      

      

    

  

    
      
          
            
  
Python API







	nestedtext.dumps(obj, *[, sort_keys, …])

	Recursively convert object to NestedText string.



	nestedtext.dump(obj, f, **kwargs)

	Write the NestedText representation of the given object to the given file.



	nestedtext.loads(content[, source, on_dup])

	Loads NestedText from string.



	nestedtext.load([f, on_dup])

	Loads NestedText from file or stream.



	nestedtext.NestedTextError(*args, **kwargs)

	The load and dump functions all raise NestedTextError when they discover an error.










            

          

      

      

    

  

    
      
          
            
  
nestedtext.dumps


	
nestedtext.dumps(obj, *, sort_keys=False, indent=4, renderers=None, default=None, level=0)

	Recursively convert object to NestedText string.


	Parameters

	
	obj – The object to convert to NestedText.


	sort_keys (bool or func) – Dictionary items are sorted by their key if sort_keys is true.
If a function is passed in, it is used as the key function.


	indent (int) – The number of spaces to use to represent a single level of
indentation.  Must be one or greater.


	renderers (dict) – A dictionary where the keys are types and the values are render
functions (functions that take an object and convert it to a string).
These will be used to convert values to strings during the
conversion.


	default (str or func) – The default renderer. Use to render otherwise unrecognized objects
to strings. If not provided an error will be raised for unsupported
data types. Typical values are repr or str. If ‘strict’ is
specified then only dictionaries, lists, strings, and those types
specified in renderers are allowed. If default is not specified
then a broader collection of value types are supported, including
None, bool, int, float, and list- and dict-like objects.


	level (int) – The number of indentation levels.  When dumps is invoked recursively
this is used to increment the level and so the indent.  Generally
not specified by the user, but can be useful in unusual situations
to specify an initial indent.






	Returns

	The NestedText content.



	Raises

	NestedTextError – if there is a problem in the input data.





Examples

This example writes to a string, but it is common to write to a file.
The file name and extension are arbitrary. However, by convention a
‘.nt’ suffix is generally used for NestedText files.

>>> import nestedtext as nt

>>> data = {
...     'name': 'Kristel Templeton',
...     'sex': 'female',
...     'age': '74',
... }

>>> try:
...     print(nt.dumps(data))
... except nt.NestedTextError as e:
...     print(str(e))
name: Kristel Templeton
sex: female
age: 74





The NestedText format only supports dictionaries, lists, and strings.
By default, dumps is configured to be rather forgiving, so it will
render many of the base Python data types, such as None, bool,
int, float and list-like types such as tuple and set by
converting them to the types supported by the format.  This implies
that a round trip through dumps and loads could result in the types
of values being transformed. You can prevent this by passing
default=’strict’ to dumps.  Doing so means that values that are not
dictionaries, lists, or strings generate exceptions.

>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}

>>> try:
...     print(nt.dumps(data))
... except nt.NestedTextError as e:
...     print(str(e))
key: 42
value: 3.1415926
valid: True

>>> try:
...     print(nt.dumps(data, default='strict'))
... except nt.NestedTextError as e:
...     print(str(e))
42: unsupported type.





Alternatively, you can specify a function to default, which is used
to convert values to strings.  It is used if no other converter is
available.  Typical values are str and repr.

>>> class Color:
...     def __init__(self, color):
...         self.color = color
...     def __repr__(self):
...         return f'Color({self.color!r})'
...     def __str__(self):
...         return self.color

>>> data['house'] = Color('red')
>>> print(nt.dumps(data, default=repr))
key: 42
value: 3.1415926
valid: True
house: Color('red')

>>> print(nt.dumps(data, default=str))
key: 42
value: 3.1415926
valid: True
house: red





You can also specify a dictionary of renderers. The dictionary maps the
object type to a render function.

>>> renderers = {
...     bool: lambda b: 'yes' if b else 'no',
...     int: hex,
...     float: lambda f: f'{f:0.3}',
...     Color: lambda c: c.color,
... }

>>> try:
...    print(nt.dumps(data, renderers=renderers))
... except nt.NestedTextError as e:
...     print(str(e))
key: 0x2a
value: 3.14
valid: yes
house: red





If the dictionary maps a type to None, then the default behavior is
used for that type. If it maps to False, then an exception is raised.

>>> renderers = {
...     bool: lambda b: 'yes' if b else 'no',
...     int: hex,
...     float: False,
...     Color: lambda c: c.color,
... }

>>> try:
...    print(nt.dumps(data, renderers=renderers))
... except nt.NestedTextError as e:
...     print(str(e))
3.1415926: unsupported type.





Both default and renderers may be used together. renderers has
priority over the built-in types and default.  When a function is
specified as default, it is always applied as a last resort.









            

          

      

      

    

  

    
      
          
            
  
nestedtext.dump


	
nestedtext.dump(obj, f, **kwargs)

	Write the NestedText representation of the given object to the given file.


	Parameters

	
	obj – The object to convert to NestedText.


	f (str, os.PathLike, io.TextIOBase) – The file to write the NestedText content to.  The file can be
specified either as a path (e.g. a string or a pathlib.Path) or
as a text IO instance (e.g. an open file).  If a path is given, the
will be opened, written, and closed.  If an IO object is given, it
must have been opened in a mode that allows writing (e.g.
open(path, 'w')), if applicable.  It will be written and not
closed.

The name used for the file is arbitrary but it is tradition to use a
.nt suffix.




	kwargs – See dumps() for optional arguments.






	Returns

	The NestedText content.



	Raises

	
	NestedTextError – if there is a problem in the input data.


	OSError – if there is a problem opening the file.








Examples

This example writes to a pointer to an open file.

>>> import nestedtext as nt
>>> from inform import fatal, os_error

>>> data = {
...     'name': 'Kristel Templeton',
...     'sex': 'female',
...     'age': '74',
... }

>>> try:
...     with open('data.nt', 'w', encoding='utf-8') as f:
...         nt.dump(data, f)
... except nt.NestedTextError as e:
...     fatal(e)
... except OSError as e:
...     fatal(os_error(e))





This example writes to a file specified by file name.

>>> try:
...     nt.dump(data, 'data.nt')
... except nt.NestedTextError as e:
...     fatal(e)
... except OSError as e:
...     fatal(os_error(e))
>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}













            

          

      

      

    

  

    
      
          
            
  
nestedtext.loads


	
nestedtext.loads(content, source=None, *, on_dup=None)

	Loads NestedText from string.


	Parameters

	
	content (str) – String that contains encoded data.


	source (str or Path) – If given, this string is attached to any error messages as the
culprit. It is otherwise unused. Is often the name of the file that
originally contained the NestedText content.


	on_dup (str or func) – Indicates how duplicate keys in dictionaries should be handled. By
default they raise exceptions. Specifying ‘ignore’ causes them to be
ignored. Specifying ‘replace’ results in them replacing earlier
items. By specifying a function, the keys can be de-duplicated.
This call-back function returns a new key and takes four arguments:


	The new key (duplicates an existing key).


	The new value.


	The entire dictionary as it is at the moment the duplicate key is
found.


	The state; a dictionary that is created as the loads is called
and deleted as it returns. Values placed in this dictionary are
retained between multiple calls to this call back function.











	Returns

	The extracted data.  If content is empty, None is returned.



	Raises

	NestedTextError – if there is a problem in the NextedText content.





Examples

NestedText is specified to loads in the form of a string:

>>> import nestedtext as nt

>>> contents = """
... name: Kristel Templeton
... sex: female
... age: 74
... """

>>> try:
...     data = nt.loads(contents)
... except nt.NestedTextError as e:
...     e.terminate()

>>> print(data)
{'name': 'Kristel Templeton', 'sex': 'female', 'age': '74'}





loads() takes an optional second argument, culprit. If specified,
it will be prepended to any error messages. It is often used to
designate the source of contents. For example, if contents were
read from a file, culprit would be the file name.  Here is a typical
example of reading NestedText from a file:

>>> filename = 'examples/duplicate-keys.nt'
>>> try:
...     with open(filename, encoding='utf-8') as f:
...         addresses = nt.loads(f.read(), filename)
... except nt.NestedTextError as e:
...     print(e.render())
...     print(*e.get_codicil(), sep="\n")
examples/duplicate-keys.nt, 5: duplicate key: name.
   4 «name:»
   5 «name:»
      ▲





Notice in the above example the encoding is explicitly specified as
‘utf-8’.  NestedText files should always be read and written using
utf-8 encoding.

The following examples demonstrate the various ways of handling
duplicate keys:

>>> content = """
... key: value 1
... key: value 2
... key: value 3
... name: value 4
... name: value 5
... """

>>> print(nt.loads(content))
Traceback (most recent call last):
...
nestedtext.NestedTextError: 3: duplicate key: key.

>>> print(nt.loads(content, on_dup='ignore'))
{'key': 'value 1', 'name': 'value 4'}

>>> print(nt.loads(content, on_dup='replace'))
{'key': 'value 3', 'name': 'value 5'}

>>> def de_dup(key, value, data, state):
...     if key not in state:
...         state[key] = 1
...     state[key] += 1
...     return f"{key}#{state[key]}"

>>> print(nt.loads(content, on_dup=de_dup))
{'key': 'value 1', 'key#2': 'value 2', 'key#3': 'value 3', 'name': 'value 4', 'name#2': 'value 5'}













            

          

      

      

    

  

    
      
          
            
  
nestedtext.load


	
nestedtext.load(f=None, on_dup=None)

	Loads NestedText from file or stream.

Is the same as loads() except the NextedText is accessed by reading
a file rather than directly from a string. It does not keep the full
contents of the file in memory and so is more memory efficient with large
files.


	Parameters

	
	f (str, os.PathLike, io.TextIOBase, collections.abc.Iterator) – The file to read the NestedText content from.  This can be
specified either as a path (e.g. a string or a pathlib.Path),
as a text IO object (e.g. an open file), or as an iterator.  If a
path is given, the file will be opened, read, and closed.  If an IO
object is given, it will be read and not closed; utf-8 encoding
should be used..  If an iterator is given, it should generate full
lines in the same manner that iterating on a file descriptor would.


	on_dup – See loads() description of this argument.






	Returns

	The extracted data.  If content is empty, None is returned.



	Raises

	
	NestedTextError – if there is a problem in the NextedText content.


	OSError – if there is a problem opening the file.








Examples

Load from a path specified as a string:

>>> import nestedtext as nt
>>> print(open('examples/groceries.nt').read())
- Bread
- Peanut butter
- Jam


>>> nt.load('examples/groceries.nt')
['Bread', 'Peanut butter', 'Jam']





Load from a pathlib.Path:

>>> from pathlib import Path
>>> nt.load(Path('examples/groceries.nt'))
['Bread', 'Peanut butter', 'Jam']





Load from an open file object:

>>> with open('examples/groceries.nt') as f:
...     nt.load(f)
...
['Bread', 'Peanut butter', 'Jam']













            

          

      

      

    

  

    
      
          
            
  
nestedtext.NestedTextError


	
exception nestedtext.NestedTextError(*args, **kwargs)

	The load and dump functions all raise NestedTextError when they
discover an error. NestedTextError subclasses both the Python ValueError
and the Error exception from Inform.  You can find more documentation on
what you can do with this exception in the Inform documentation [https://inform.readthedocs.io/en/stable/api.html#exceptions].

The exception provides the following attributes:

source:


The source of the NestedText content, if given. This is often a
filename.




line:


The text of the line of NestedText content where the problem was found.




lineno:


The number of the line where the problem was found.




colno:


The number of the character where the problem was found on line.




prev_line:


The text of the line immediately before where the problem was found.




template:


The possibly parameterized text used for the error message.




As with most exceptions, you can simply cast it to a string to get a
reasonable error message.

>>> from textwrap import dedent
>>> import nestedtext as nt

>>> content = dedent("""
...     name1: value1
...     name1: value2
...     name3: value3
... """).strip()

>>> try:
...     print(nt.loads(content))
... except nt.NestedTextError as e:
...     print(str(e))
2: duplicate key: name1.





You can also use the report method to print the message directly. This is
appropriate if you are using inform for your messaging as it follows
inform’s conventions:

>> try:
..     print(nt.loads(content))
.. except nt.NestedTextError as e:
..     e.report()
error: 2: duplicate key: name1.
    «name1: value2»
     ▲





The terminate method prints the message directly and exits:

>> try:
..     print(nt.loads(content))
.. except nt.NestedTextError as e:
..     e.terminate()
error: 2: duplicate key: name1.
    «name1: value2»
     ▲





With exceptions generated from load() or loads() you may see
extra lines at the end of the message that show the problematic lines if
you have the exception report itself as above.  Those extra lines are
referred to as the codicil and they can be very helpful in illustrating the
actual problem. You do not get them if you simply cast the exception to a
string, but you can access them using NestedTextError.get_codicil().
The codicil or codicils are returned as a tuple.  You should join them with
newlines before printing them.

>>> try:
...     print(nt.loads(content))
... except nt.NestedTextError as e:
...     print(e.get_message())
...     print(*e.get_codicil(), sep="\n")
duplicate key: name1.
   1 «name1: value1»
   2 «name1: value2»
      ▲





Note the « and » characters in the codicil. They delimit the extend of the
text on each line and help you see troublesome leading or trailing white
space.

Exceptions produced by NestedText contain a template attribute that
contains the basic text of the message. You can change this message by
overriding the attribute using the template argument when using report,
terminate, or render.  render is like casting the exception to a
string except that allows for the passing of arguments.  For example, to
convert a particular message to Spanish, you could use something like the
following.

>>> try:
...     print(nt.loads(content))
... except nt.NestedTextError as e:
...     template = None
...     if e.template == 'duplicate key: {}.':
...         template = 'llave duplicada: {}.'
...     print(e.render(template=template))
2: llave duplicada: name1.













            

          

      

      

    

  

    
      
          
            

Index



 D
 | L
 | N
 


D


  	
      	dump() (in module nestedtext)


  

  	
      	dumps() (in module nestedtext)


  





L


  	
      	load() (in module nestedtext)


  

  	
      	loads() (in module nestedtext)


  





N


  	
      	NestedTextError


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          NestedText: A Human Friendly Data Format
        


        		
          Installation
          
            		
              Releases
            


          


        


        		
          Basic syntax
          
            		
              Dictionaries
            


            		
              Lists
            


            		
              Strings
            


            		
              Comments
            


            		
              Nesting
            


          


        


        		
          Basic use
          
            		
              NestedText Reader
            


            		
              NestedText Writer
            


          


        


        		
          Structure parser
        


        		
          Examples
          
            		
              JSON to NestedText
            


            		
              NestedText to JSON
            


            		
              Cryptocurrency holdings
            


          


        


        		
          Common mistakes
        


        		
          File format
        


        		
          Python API
          
            		
              nestedtext.dumps
            


            		
              nestedtext.dump
            


            		
              nestedtext.loads
            


            		
              nestedtext.load
            


            		
              nestedtext.NestedTextError
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





