
NestedText
Release 1.2.0

unknown

Feb 27, 2021

WHY NESTEDTEXT?

1 Related Projects 3

2 Contributing 5

Index 35

i

ii

NestedText, Release 1.2.0

Authors: Ken & Kale Kundert
Version: 1.2.0
Released: 2020-10-31
Documentation: nestedtext.org.
Please post all questions, suggestions, and bug reports to: Github.

NestedText is a file format for holding data that is to be entered, edited, or viewed by people. It allows data to be
organized into a nested collection of dictionaries, lists, and strings. In this way it is similar to JSON, YAML and
TOML, but without the complexity and risk of YAML and without the syntactic clutter of JSON and TOML. NestedText
is both simple and natural. Only a small number of concepts and rules must be kept in mind when creating it. It
is easily created, modified, or viewed with a text editor and easily understood and used by both programmers and
non-programmers.

NestedText is convenient for configuration files, address books, account information and the like. Here is an example
of a file that contains a few addresses:

Contact information for our officers

president:
name: Katheryn McDaniel
address:

> 138 Almond Street
> Topeka, Kansas 20697

phone:
cell: 1-210-555-5297
home: 1-210-555-8470

Katheryn prefers that we always call her on her cell phone.
email: KateMcD@aol.com
additional roles:

- board member

vice president:
name: Margaret Hodge
address:

> 2586 Marigold Lane
> Topeka, Kansas 20682

phone: 1-470-555-0398
email: margaret.hodge@ku.edu
additional roles:

- new membership task force
- accounting task force

treasurer:
-

name: Fumiko Purvis
address:

(continues on next page)

WHY NESTEDTEXT? 1

https://travis-ci.org/KenKundert/nestedtext
https://coveralls.io/r/KenKundert/nestedtext
https://pypi.python.org/pypi/nestedtext
https://pypi.python.org/pypi/nestedtext
https://nestedtext.org
https://github.com/KenKundert/nestedtext/issues

NestedText, Release 1.2.0

(continued from previous page)

> 3636 Buffalo Ave
> Topeka, Kansas 20692

phone: 1-268-555-0280
email: fumiko.purvis@hotmail.com
additional roles:

- accounting task force
-

name: Merrill Eldridge
Fumiko's term is ending at the end of the year.
She will be replaced by Merrill.

phone: 1-268-555-3602
email: merrill.eldridge@yahoo.com

The format holds dictionaries (ordered collections of name/value pairs), lists (ordered collections of values) and strings
(text) organized hierarchically to any depth. Indentation is used to indicate the hierarchy of the data, and a simple
natural syntax is used to distinguish the types of data in such a manner that it is not easily confused. Specifically,
lines that begin with a word (or words) followed by a colon are dictionary items, lines that begin with a dash are list
items, and lines that begin with a greater-than sign are part of a multiline string. Dictionaries and lists can be nested
arbitrarily, and the leaf values are always text, hence the name NestedText.

NestedText is somewhat unique in that the leaf values are always strings. Of course the values start off as strings in
the input file, but alternatives like YAML or TOML aggressively convert those values into the underlying data types
such as integers, floats, and Booleans. For example, a value like 2.10 would be converted to a floating point number.
But making the decision to do so is based purely on the form of the value, not the context in which it is found. This
can lead to misinterpretations. For example, assume that this value is the software version number two point ten. By
converting it to a floating point number it becomes two point one, which is wrong. There are many possible versions of
this basic issue. But there is also the inverse problem; values that should be converted to particular data types but are
not recognized. For example, a value of $2.00 should be converted to a real number but would remain a string instead.
There are simply too many values types for a general purpose solution that is only looking at the values themselves
to be able to interpret all of them. For example, 12/10/09 is likely a date, but is it in MM/DD/YY, YY/MM/DD or
DD/MM/YY form? The fact is, the value alone is often insufficient to reliably determine how to convert values into
internal data types. NestedText avoids these problems by leaving the values in their original form and allowing the
decision to be made by the end application where more context is available to help guide the conversions. If a price
is expected for a value, then $2.00 would be checked and converted accordingly. Similarly, local conventions along
with the fact that a date is expected for a particular value allows 12/10/09 to be correctly validated and converted.
This process of validation and conversion is referred to as applying a schema to the data. There are packages such as
Pydantic and Voluptuous available that make this process easy and reliable.

2 WHY NESTEDTEXT?

https://pydantic-docs.helpmanual.io
https://github.com/alecthomas/voluptuous

CHAPTER

ONE

RELATED PROJECTS

vim-nestedtext vim syntax files for NestedText.

3

https://github.com/kalekundert/vim-nestedtext

NestedText, Release 1.2.0

4 Chapter 1. Related Projects

CHAPTER

TWO

CONTRIBUTING

This package contains a Python reference implementation of NestedText and a test suite. Implementation in many
languages is required for NestedText to catch on widely. If you like the format, please consider contributing additional
implementations.

2.1 The Zen of NestedText

NestedText aspires to be a simple dumb vessel that holds peoples’ structured data, and does so in a way that allows
people to easily interact with that data.

The desire to be simple is an attempt to minimize the effort required to learn and use the language. Ideally people
can understand it by looking at one or two examples and they can use it without without needing to remember any
arcane rules and without relying on any of the knowledge that programmers accumulate through years of experience.
One source of simplicity is consistency. As such, NestedText uses a small number of rules that it applies with few
exceptions.

The desire to be dumb means that NestedText tries not to transform the data in any meaningful way. It parses the
structure of the data without doing anything that might change how the data is interpreted. Instead, it aims to make it
easy for you to interpret the data yourself. After all, you understand what the data is supposed to mean, so you are in
the best position to interpret it. There are also many powerful tools available to help with this exact task.

2.2 Alternatives

There are no shortage of well established alternatives to NestedText for storing data in a human-readable text file. The
features and shortcomings of some of these alternatives are discussed below:

2.2.1 JSON

JSON is a subset of JavaScript suitable for holding data. Like NestedText, it consists of a hierarchical collection of
dictionaries, lists, and strings, but also allows integers, floats, Booleans and nulls. The fundamental problem with JSON
in this context is that its meant for serializing and exchanging data between programs; it’s not meant for configuration
files. Of course, it’s used for this purpose anyways, where it has a number of glaring shortcomings.

To begin, it has an excessive amount of syntactic clutter. Dictionary keys and strings both have to be quoted, commas
are required between dictionary and list items (but forbidden after the last item), braces are required around dictio-
naries, etc. Features that would improve clarity are also lacking. Comments are not allowed, multiline strings are not
supported, and whitespace is insignificant (leading to the possibility that the appearance of the data may not match its
true structure). More conceptually, it is the responsibility of the user to provide data of the correct type (e.g. 32 vs.

5

https://www.json.org/json-en.html

NestedText, Release 1.2.0

32.0 vs. "32"), even though the application already knows what type it expects. All of this results in JSON being a
frustrating format for humans to read, enter or edit.

NestedText has the following clear advantages over JSON as human readable and writable data file format:

• text does not require quotes

• data is left in its original form

• comments

• multiline strings

• special characters without escaping them

• commas are not used to separate dictionary and list items

2.2.2 YAML

YAML is considered by many to be a human friendly alternative to JSON, but over time it has accumulated too many
data types and too many formats. To distinguish between all the various types and formats, a complicated and non-
intuitive set of rules developed. YAML at first appears very appealing when used with simple examples, but things
can quickly become complicated or provide unexpected results. A reaction to this is the use of YAML subsets, such as
StrictYAML. However, the subsets still try to maintain compatibility with YAML and so inherit much of its complexity.
For example, both YAML and StrictYAML support nine different ways of writing multiline strings.

YAML avoids excessive quoting and supports comments and multiline strings, but like JSON it converts data to the
underlying data types as appropriate, but unlike with JSON, the lack of quoting makes the format ambiguous, which
means it has to guess at times, and small seemingly insignificant details can affect the result.

NestedText was inspired by YAML, but eschews its complexity. It has the following clear advantages over YAML as
human readable and writable data file format:

• simple

• unambiguous (no implicit typing)

• data is left in its original form

• syntax is insensitive to special characters within text

• safe, no risk of malicious code execution

2.2.3 TOML

TOML is a configuration file format inspired by the well-known INI syntax. It supports a number of basic data types
(notably including dates and times) using syntax that is more similar to JSON (explicit but verbose) than to YAML
(succinct but confusing). As discussed previously, though, this makes it the responsibility of the user to specify the
correct type for each field, when it should be the responsibility of the application to convert each field to the correct
type.

Another flaw in TOML is that it is difficult to specify deeply nested structures. The only way to specify a nested
dictionary is to give the full key to that dictionary, relative to the root of the entire hierarchy. This is not much a
problem if the hierarchy only has 1-2 levels, but any more than that and you find yourself typing the same long keys
over and over. A corollary to this is that TOML-based configurations do not scale well: increases in complexity are
often accompanied by disproportionate decreases in readability and writability.

NestedText has the following clear advantages over TOML as human readable and writable data file format:

• text does not require quotes

6 Chapter 2. Contributing

https://yaml.org/
\T1\textless {}https://hitchdev.com/strictyaml
http://stackoverflow.com/a/21699210/660921
https://toml.io/en/

NestedText, Release 1.2.0

• data is left in its original form

• indentation used to succinctly represent nested data

• the structure of the file matches the structure of the data

2.3 Installation

pip3 install --user nestedtext

2.3.1 Releases

Latest development release

Version: 1.2.0
Released: 2020-10-31

v1.2 (2020-10-31)

• Treat CR LF, CR, or LF as a line break.

• Always quote keys that start with a quote

v1.1 (2020-10-13)

• Add ability to specify return type of load() and loads().

• Quoted keys are now less restricted.

• Empty dictionaries and lists are rejected by dump() and dumps() except as top-level object if
default argument is specified as ‘strict’.

Warning: Be aware that this version is not fully backward compatible. Unlike previous versions, this
version allows you to restrict the type of the return value of the load() and loads() functions, and
the default is ‘dict’. The previous behavior is still supported, but you must explicitly specify top=’any’
as an argument.

This change results in a simpler return value from load() and loads() in most cases. This sub-
stantially reduces the chance of coding errors. It was noticed that it was common to simply assume
that the top-level was a dictionary when writing code that used these functions, which could result in
unexpected errors when users hand-create the input data. Specifying the return value eliminates this
type of error.

There is another small change that is not backward compatible. The source argument to these functions
is now a keyword only argument.

2.3. Installation 7

NestedText, Release 1.2.0

v1.0 (2020-10-03)

• Production release.

v0.6 (2020-09-26)

• Added load() and dump().

• Eliminated NestedTextError.get_extended_codicil.

v0.5 (2020-09-11)

• allow user to manage duplicate keys detected by loads().

v0.4 (2020-09-07)

• Change rest-of-line strings to include all characters given, including leading and trailing quotes and spaces.

• The NestedText top-level is no longer restricted to only dictionaries and lists. The top-level can now also be a
single string.

• loads() now returns None when given an empty NestedText document.

• Change NestedTextError attribute names to make them more consistent with those used by JSON package.

• Added NestedTextError.get_extended_codicil.

v0.3 (2020-09-03)

• Allow comments to be indented.

v0.2 (2020-09-02)

• Minor enhancements and bug fixes.

v0.1 (2020-08-30)

• Initial release.

2.4 Basic syntax

This is a overview of the syntax of a NestedText document, which consists of a nested collection of dictionaries, lists,
and strings. All leaf values must be simple text. You can find more specifics later on.

8 Chapter 2. Contributing

NestedText, Release 1.2.0

2.4.1 Dictionaries

A dictionary is an ordered collection of name/value pairs:

name 1: value 1
name 2: value 2

A dictionary item is introduced by a key followed by a colon at the start of a line. The key is a string and must be
quoted if it contains characters that could be misinterpreted. You quote it using either single or double quotes (both
have the same meaning). Keys are the only place in NestedText where quoting is used to protect text.

The value of a dictionary item may be a rest-of-line string, a multiline string, a list, or a dictionary. If it is a rest-of-line
string, it contains all characters following the “: ” that separates the key from the value. For all other values, the rest
of the line must be empty, with the value given on the next line, which must be further indented.

A dictionary is all adjacent dictionary items at the same indentation level.

2.4.2 Lists

A list is an ordered collection of values:

- value 1
- value 2

A list item is introduced with a dash at the start of a line. The value of a list item may be a rest-of-line string, a
multiline string, a list, or a dictionary. If it is a rest-of-line string, it contains all characters that follow the “- ” that
introduces the list item. For all other values, the rest of the line must be empty, with the value given on the next line,
which must be further indented.

A list is all adjacent list items at the same indentation level.

2.4.3 Strings

There are two types of strings: rest-of-line strings and multiline strings. Rest-of-line strings are simply all the remain-
ing characters on the line, including any leading or trailing white space. They can contain any character other than
newline:

code : input signed [7:0] level
regex : [+-]?([0-9]*[.])?[0-9]+\s*\w*
math : -b + sqrt(b**2 - 4*a*c)
unicode: José and François

Multi-line strings are specified on lines prefixed with the greater-than symbol. The content of each line starts after the
first space that follows the greater-than symbol:

> This is the first line of a multiline string, it is indented.
> This is the second line, it is not indented.

You can include empty lines in the string simply by specifying the greater-than symbol alone on a line:

>
> “The worth of a man to his society can be measured by the contribution he
> makes to it -- less the cost of sustaining himself and his mistakes in it.”
>
> -- Erik Jonsson

2.4. Basic syntax 9

NestedText, Release 1.2.0

The multiline string is all adjacent lines that start with a greater than tag with the tags removed and the lines joined
together with newline characters inserted between each line. Except for the space that separates the tag from the text,
white space from both the beginning and the end of each line is retained.

2.4.4 Comments

Lines that begin with a hash as the first non-space character, or lines that are empty or consist only of spaces and tabs
are comment lines and are ignored. Indentation is not significant on comment lines.

this line is ignored

2.4.5 Nesting

A value for a dictionary or list item may be a rest-of-line string or it may be a nested dictionary, list or a multiline
string. Indentation is used to indicate nesting. Indentation increases to indicate the beginning of a new nested object,
and indentation returns to a prior level to indicate its end. In this way, data can be nested to an arbitrary depth:

Contact information for our officers

president:
name: Katheryn McDaniel
address:

> 138 Almond Street
> Topeka, Kansas 20697

phone:
cell: 1-210-555-5297
home: 1-210-555-8470

Katheryn prefers that we always call her on her cell phone.
email: KateMcD@aol.com
kids:

- Joanie
- Terrance

vice president:
name: Margaret Hodge
address:

> 2586 Marigold Land
> Topeka, Kansas 20697

phone: 1-470-555-0398
email: margaret.hodge@ku.edu
kids:

- Arnie
- Zach
- Maggie

It is recommended that each level of indentation be represented by a consistent number of spaces (with the suggested
number being 2 or 4). However, it is not required. Any increase in the number of spaces in the indentation represents
an indent and the number of spaces need only be consistent over the length of the nested object.

The data can be nested arbitrarily deeply using dictionaries and lists, but the leaf values, the values that are nested
most deeply, must all be strings.

10 Chapter 2. Contributing

NestedText, Release 1.2.0

2.5 Basic use

The NestedText Python API is similar to that of JSON, YAML, TOML, etc.

2.5.1 NestedText Reader

The loads() function is used to convert NestedText held in a string into a Python data structure. If there is a problem
interpreting the input text, a NestedTextError exception is raised.

>>> import nestedtext as nt

>>> content = """
... access key id: 8N029N81
... secret access key: 9s83109d3+583493190
... """

>>> try:
... data = nt.loads(content, 'dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'access key id': '8N029N81', 'secret access key': '9s83109d3+583493190'}

You can also read directly from a file or stream using the load() function.

>>> from inform import fatal, os_error

>>> try:
... groceries = nt.load('examples/groceries.nt', 'dict')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

>>> print(groceries)
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Notice that the type of the return value is specified to be ‘dict’. This is the default. You can also specify ‘list’, ‘str’, or
‘any’. All but ‘any’ constrain the data type of the top-level of the NestedText content.

2.5.2 NestedText Writer

The dumps() function is used to convert a Python data structure into a NestedText string. As before, if there is a
problem converting the input data, a NestedTextError exception is raised.

>>> try:
... content = nt.dumps(data)
... except nt.NestedTextError as e:
... e.terminate()

>>> print(content)
access key id: 8N029N81
secret access key: 9s83109d3+583493190

2.5. Basic use 11

NestedText, Release 1.2.0

The dump() function writes NestedText to a file or stream.

>>> try:
... content = nt.dump(data, 'examples/access.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

2.6 Schemas

Because NestedText explicitly does not attempt to interpret the data it parses, it is meant to be paired with a tool that
can both validate the data and convert them to the expected types. For example, if you are expecting a date for a
particular field, you would want to validate that the input looks like a date (e.g. YYYY/MM/DD) and then convert it to
a useful type (e.g. arrow.Arrow). You can do this on an ad hoc basis, or you can apply a schema.

A schema is the specification of what fields are expected (e.g. “birthday”), what types they should be (e.g. a date),
and what values are legal (e.g. must be in the past). There are many libraries available for applying a schema to data
such as those parsed by NestedText. Because different libraries may be more or less appropriate in different scenarios,
NestedText avoids favoring any one library specifically:

• pydantic: Define schema using type annotations

• voluptuous: Define schema using objects

• schema: Define schema using objects

• colander: Define schema using classes

• schematics: Define schema using classes

• cerebus : Define schema using strings

• valideer: Define schema using strings

• jsonschema: Define schema using JSON

See the Examples page for examples of how to use some of these libraries with NestedText.

The approach of using separate tools for parsing and interpreting the data has two significant advantages that are worth
briefly highlighting. First is that the validation tool understands the context and meaning of the data in a way that the
parsing tool cannot. For example, “12” can be an integer if it represents a day of a month, a float if it represents the
output voltage of a power brick, or a string if represents the version of a software package. Attempting to interpret
“12” without this context is inherently unreliable. Second is that when data is interpreted by the parser, it puts the
onus on the user to specify the correct types. Going back to the previous example, the user would be required to know
whether 12, 12.0, or "12" should be entered. It does not make sense for this decision to be made by the user instead
of the application.

12 Chapter 2. Contributing

https://pydantic-docs.helpmanual.io/
https://github.com/alecthomas/voluptuous
https://github.com/keleshev/schema
https://docs.pylonsproject.org/projects/colander/en/latest/
http://schematics.readthedocs.io/en/latest/
https://docs.python-cerberus.org/en/stable/
https://github.com/podio/valideer
https://python-jsonschema.readthedocs.io/en/latest/

NestedText, Release 1.2.0

2.7 Examples

2.7.1 Validate with Pydantic

This example shows how to use pydantic to validate and parse a NestedText file. The file in this case specifies deploy-
ment settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
- www.example.com

database:
engine: django.db.backends.mysql
host: db.example.com
port: 3306
user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note that basic types like integers, strings, Booleans, and lists are specified
using standard type annotations. Dictionaries with specific keys are represented by model classes, and it is possible to
reference one model from within another. Pydantic also has built-in support for validating email addresses, which we
can take advantage of here:

#!/usr/bin/env python3

import nestedtext as nt
from pydantic import BaseModel, EmailStr
from typing import List
from pprint import pprint

class Database(BaseModel):
engine: str
host: str
port: int
user: str

class Config(BaseModel):
debug: bool
secret_key: str
allowed_hosts: List[str]
database: Database
webmaster_email: EmailStr

obj = nt.load('deploy.nt')
config = Config.parse_obj(obj)

pprint(config.dict())

This produces the following data structure:

{'allowed_hosts': ['www.example.com'],
'database': {'engine': 'django.db.backends.mysql',

'host': 'db.example.com',

(continues on next page)

2.7. Examples 13

https://pydantic-docs.helpmanual.io
https://pydantic-docs.helpmanual.io

NestedText, Release 1.2.0

(continued from previous page)

'port': 3306,
'user': 'www'},

'debug': False,
'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
'webmaster_email': 'admin@example.com'}

2.7.2 Validate with Voluptuous

This example shows how to use voluptuous to validate and parse a NestedText file. The input file is the same as in the
previous example, i.e. deployment settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
- www.example.com

database:
engine: django.db.backends.mysql
host: db.example.com
port: 3306
user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note how the structure of the data is specified using basic Python objects. The
Coerce() function is necessary to have voluptuous convert string input to the given type; otherwise it would simply
check that the input matches the given type:

#!/usr/bin/env python3

import nestedtext as nt
from voluptuous import Schema, Coerce
from pprint import pprint

schema = Schema({
'debug': Coerce(bool),
'secret_key': str,
'allowed_hosts': [str],
'database': {

'engine': str,
'host': str,
'port': Coerce(int),
'user': str,

},
'webmaster_email': str,

})
raw = nt.load('deploy.nt')
config = schema(raw)

pprint(config)

This produces the following data structure:

14 Chapter 2. Contributing

https://github.com/alecthomas/voluptuous

NestedText, Release 1.2.0

{'allowed_hosts': ['www.example.com'],
'database': {'engine': 'django.db.backends.mysql',

'host': 'db.example.com',
'port': 3306,
'user': 'www'},

'debug': False,
'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
'webmaster_email': 'admin@example.com'}

2.7.3 JSON to NestedText

This example implements a command-line utility that converts a JSON file to NestedText. It demonstrates the use of
dumps() and NestedTextError.

#!/usr/bin/env python3
"""
Read a JSON file and convert it to NestedText.

usage:
json-to-nestedtext [options] [<filename>]

options:
-f, --force force overwrite of output file
-i <n>, --indent <n> number of spaces per indent [default: 4]

If <filename> is not given, json input is taken from stdin and NestedText output
is written to stdout.
"""

from docopt import docopt
from inform import fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:

indent = int(cmdline['--indent'])
except Exception:

warn('indent garbled.', culprit=cmdline['--indent'])
indent = 4

try:
read JSON content; from file or from stdin
if input_filename:

input_path = Path(input_filename)
json_content = input_path.read_text(encoding='utf-8')

else:
json_content = sys.stdin.read()

data = json.loads(json_content)

convert to NestedText
(continues on next page)

2.7. Examples 15

NestedText, Release 1.2.0

(continued from previous page)

nestedtext_content = nt.dumps(data, indent=indent) + "\n"

output NestedText content; to file or to stdout
if input_filename:

output_path = input_path.with_suffix('.nt')
if output_path.exists():

if not cmdline['--force']:
fatal('file exists, use -f to force over-write.', culprit=output_path)

output_path.write_text(nestedtext_content, encoding='utf-8')
else:

sys.stdout.write(nestedtext_content)
except OSError as e:

fatal(os_error(e))
except nt.NestedTextError as e:

e.terminate(culprit=input_filename)
except json.JSONDecodeError as e:

create a nice error message with surrounding context
msg = e.msg
culprit = input_filename
codicil = None
try:

lineno = e.lineno
culprit = (culprit, lineno)
colno = e.colno
lines_before = e.doc.split('\n')[lineno-2:lineno]
lines = []
for i, l in zip(range(lineno-len(lines_before), lineno), lines_before):

lines.append(f'{i+1:>4}> {l}')
lines_before = '\n'.join(lines)
lines_after = e.doc.split('\n')[lineno:lineno+1]
lines = []
for i, l in zip(range(lineno, lineno + len(lines_after)), lines_after):

lines.append(f'{i+1:>4}> {l}')
lines_after = '\n'.join(lines)
codicil = f"{lines_before}\n {colno*' '}\n{lines_after}"

except Exception:
pass

fatal(full_stop(msg), culprit=culprit, codicil=codicil)

The presence of this example should not be taken as a suggestion that NestedText is a replacement for JSON. Be aware
that not all JSON data can be converted to NestedText, and in the conversion all type information is lost.

2.7.4 NestedText to JSON

This example implements a command-line utility that converts a NestedText file to JSON. It demonstrates the use of
load() and NestedTextError.

#!/usr/bin/env python3
"""
Read a NestedText file and convert it to JSON.

usage:
nestedtext-to-json [options] [<filename>]

options:

(continues on next page)

16 Chapter 2. Contributing

NestedText, Release 1.2.0

(continued from previous page)

-f, --force force overwrite of output file
-d, --dedup de-duplicate keys in dictionaries

If <filename> is not given, NestedText input is taken from stdin and JSON output
is written to stdout.
"""

from docopt import docopt
from inform import fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

def de_dup(key, value, data, state):
if key not in state:

state[key] = 1
state[key] += 1
return f"{key}#{state[key]}"

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
on_dup = de_dup if cmdline['--dedup'] else None

try:
if input_filename:

input_path = Path(input_filename)
data = nt.load(input_path, top='any', on_dup=de_dup)
json_content = json.dumps(data, indent=4)
output_path = input_path.with_suffix('.json')
if output_path.exists():

if not cmdline['--force']:
fatal('file exists, use -f to force over-write.', culprit=output_path)

output_path.write_text(json_content, encoding='utf-8')
else:

data = nt.load(sys.stdin, top='any', on_dup=de_dup)
json_content = json.dumps(data, indent=4)
sys.stdout.write(json_content)

except OSError as e:
fatal(os_error(e))

except nt.NestedTextError as e:
e.terminate()

2.7. Examples 17

NestedText, Release 1.2.0

2.7.5 Cryptocurrency holdings

This example implements a command-line utility that displays the current value of cryptocurrency holdings. The
program starts by reading a settings file held in ~/.config/cc that in this case holds:

holdings:
- 5 BTC
- 50 ETH
- 50,000 XLM

currency: USD
date format: h:mm A, dddd MMMM D
screen width: 90

This file, of course, is in NestedText format. After being read by load() it is processed by a voluptuous schema
that does some checking on the form of the values specified and then converts the holdings to a list of QuantiPhy
quantities. The latest prices are then downloaded from cryptocompare, the value of the holdings are computed, and
then displayed. The result looks like this:

Holdings as of 11:18 AM, Wednesday September 2.
5 BTC = $56.8k @ $11.4k/BTC 68.4%
50 ETH = $21.7k @ $434/ETH 26.1%
50 kXLM = $4.6k @ $92m/XLM 5.5%
Total value = $83.1k.

And finally, the code:

#!/usr/bin/env python3

from appdirs import user_config_dir
import nestedtext as nt
from voluptuous import Schema, Required, All, Length, Invalid, Coerce
from inform import display, fatal, is_collection, os_error, render_bar, full_stop
import arrow
import requests
from quantiphy import Quantity
from pathlib import Path

configure preferences
Quantity.set_prefs(prec=2, ignore_sf = True)
currency_symbols = dict(USD='$', EUR='C', JPY='¥', GBP='£')

try:
read settings
settings_file = Path(user_config_dir('cc'), 'settings')
settings_schema = Schema({

Required('holdings'): All([Coerce(Quantity)], Length(min=1)),
'currency': str,
'date format': str,
'screen width': Coerce(int)

})
settings = settings_schema(nt.load(settings_file, top='dict'))
currency = settings.get('currency', 'USD')
currency_symbol = currency_symbols.get(currency, currency)
screen_width = settings.get('screen width', 80)

download latest asset prices from cryptocompare.com
params = dict(

(continues on next page)

18 Chapter 2. Contributing

https://github.com/alecthomas/voluptuous
https://quantiphy.readthedocs.io
https://www.cryptocompare.com

NestedText, Release 1.2.0

(continued from previous page)

fsyms = ','.join(coin.units for coin in settings['holdings']),
tsyms = currency,

)
url = 'https://min-api.cryptocompare.com/data/pricemulti'
try:

r = requests.get(url, params=params)
if r.status_code != requests.codes.ok:

r.raise_for_status()
except Exception as e:

raise Error('cannot access cryptocurrency prices:', codicil=str(e))
prices = {k: Quantity(v['USD'], currency_symbol) for k, v in r.json().items()}

compute total
total = Quantity(0, currency_symbol)
for coin in settings['holdings']:

price = prices[coin.units]
value = price.scale(coin)
total = total.add(value)

display holdings
now = arrow.now().format(settings.get('date format', 'h:mm A, dddd MMMM D, YYYY'))
print(f'Holdings as of {now}.')
bar_width = screen_width - 37
for coin in settings['holdings']:

price = prices[coin.units]
value = price.scale(coin)
portion = value/total
summary = f'{coin} = {value} @ {price}/{coin.units}'
print(f'{summary:<30} {portion:<5.1%} {render_bar(portion, bar_width)}')

print(f'Total value = {total}.')

except nt.NestedTextError as e:
e.terminate()

except Invalid as e:
fatal(full_stop(e.msg), culprit=e.path)

except OSError as e:
fatal(os_error(e))

except KeyboardInterrupt:
pass

2.7.6 PostMortem

This example illustrates how one can implement references in NestedText. A reference allows you to define some
content once and insert that content multiple places in the document. The example also demonstrates a slightly
different way to implement validation and conversion on a per field basis with voluptuous.

PostMortem is a program that generates a packet of information that is securely shared with your dependents in case
of your death. Only the settings processing part of the package is shown here. Here is a configuration file that Odin
might use to generate packets for his wife and kids:

my gpg ids: odin@norse-gods.com
sign with: @ my gpg ids
name template: {name}-{now:YYMMDD}
estate docs:

- ~/home/estate/trust.pdf

(continues on next page)

2.7. Examples 19

https://github.com/alecthomas/voluptuous
https://github.com/kenkundert/postmortem

NestedText, Release 1.2.0

(continued from previous page)

- ~/home/estate/will.pdf
- ~/home/estate/deed-valhalla.pdf

recipients:
frigg:

email: frigg@norse-gods.com
category: wife
attach: @ estate docs
networth: odin

thor:
email: thor@norse-gods.com
category: kids
attach: @ estate docs

loki:
email: loki@norse-gods.com
category: kids
attach: @ estate docs

Notice that estate docs is defined at the top level. It is not a PostMortem setting; it simply defines a value that will be
interpolated into a setting later. The interpolation is done by specifying @ along with the name of the reference as a
value. So for example, in recipients attach is specified as @ estate docs. This causes the list of estate documents
to be used as attachments. The same thing is done in sign with, which interpolates my gpg ids.

Here is the code for validating and transforming the PostMortem settings:

#!/usr/bin/env python3
import nestedtext as nt
from pathlib import Path
from voluptuous import Schema, Invalid, Extra, Required, REMOVE_EXTRA
from pprint import pprint

Settings schema
First define some functions that are used for validation and coercion
def to_str(arg):

if isinstance(arg, str):
return arg

raise Invalid('expected text.')

def to_ident(arg):
arg = to_str(arg)
if len(arg.split()) > 1:

raise Invalid('expected simple identifier.')
return arg

def to_list(arg):
if isinstance(arg, str):

return arg.split()
if isinstance(arg, dict):

raise Invalid('expected list.')
return arg

def to_paths(arg):
return [Path(p).expanduser() for p in to_list(arg)]

def to_email(arg):
user, _, host = arg.partition('@')
if '.' in host:

(continues on next page)

20 Chapter 2. Contributing

NestedText, Release 1.2.0

(continued from previous page)

return arg
raise Invalid('expected email address.')

def to_emails(arg):
return [to_email(e) for e in to_list(arg)]

def to_gpg_id(arg):
try:

return to_email(arg) # gpg ID may be an email address
except Invalid:

try:
int(arg, base=16) # if not an email, it must be a hex key
assert len(arg) >= 8 # at least 8 characters long
return arg

except (ValueError, AssertionError):
raise Invalid('expected GPG id.')

def to_gpg_ids(arg):
return [to_gpg_id(i) for i in to_list(arg)]

define the schema for the settings file
schema = Schema(

{
Required('my gpg ids'): to_gpg_ids,
'sign with': to_gpg_id,
'avendesora gpg passphrase account': to_str,
'avendesora gpg passphrase field': to_str,
'name template': to_str,
Required('recipients'): {

Extra: {
Required('category'): to_ident,
Required('email'): to_emails,
'gpg id': to_gpg_id,
'attach': to_paths,
'networth': to_ident,

}
},

},
extra = REMOVE_EXTRA

)

this function implements references
def expand_settings(value):

allows macro values to be defined as a top-level setting.
allows macro reference to be found anywhere.
if isinstance(value, str):

value = value.strip()
if value[:1] == '@':

value = settings[value[1:].strip()]
return value

if isinstance(value, dict):
return {k:expand_settings(v) for k, v in value.items()}

if isinstance(value, list):
return [expand_settings(v) for v in value]

raise NotImplementedError(value)

try:
(continues on next page)

2.7. Examples 21

NestedText, Release 1.2.0

(continued from previous page)

Read settings
config_filepath = Path('postmortem.nt')
if config_filepath.exists():

load from file
settings = nt.load(config_filepath)

expand references
settings = expand_settings(settings)

check settings and transform to desired types
settings = schema(settings)

show the resulting settings
pprint(settings)

except nt.NestedTextError as e:
e.report()

except Invalid as e:
print(f"ERROR: {', '.join(str(p) for p in e.path)}: {e.msg}")

This code uses expand_settings to implement references, and it uses the Voluptuous schema to clean and validate the
settings and convert them to convenient forms. For example, the user could specify attach as a string or a list, and the
members could use a leading ~ to signify a home directory. Applying to_paths in the schema converts whatever is
specified to a list and converts each member to a pathlib path with the ~ properly expanded.

Notice that the schema is defined in a different manner that the above examples. In those, you simply state which type
you are expecting for the value and you use the Coerce function to indicate that the value should be cast to that type
if needed. In this example, simple functions are passed in that perform validation and coercion as needed. This is a
more flexible approach and allows better control of the error messages.

Here are the processed settings:

{'my gpg ids': ['odin@norse-gods.com'],
'name template': '{name}-{now:YYMMDD}',
'recipients': {'frigg': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),

PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'wife',
'email': ['frigg@norse-gods.com'],
'networth': 'odin'},

'loki': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'kids',
'email': ['loki@norse-gods.com']},

'thor': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'kids',
'email': ['thor@norse-gods.com']}},

'sign with': 'odin@norse-gods.com'}

22 Chapter 2. Contributing

https://docs.python.org/3/library/pathlib.html

NestedText, Release 1.2.0

2.8 Common mistakes

When load() or loads() complains of errors it is important to look both at the line fingered by the error message
and the one above it. The line that is the target of the error message might by an otherwise valid NestedText line if it
were not for the line above it. For example, consider the following example:

Example:

>>> import nestedtext as nt

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address: Home
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content)
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation. An indent may only follow a dictionary or list
item that does not already have a value.

4 « address: Home»
5 « > 3636 Buffalo Ave»

Notice that the complaint is about line 5, but problem stems from line 4 where Home gave a value to address. With a
value specified for address, any further indentation on line 5 indicates a second value is being specified for address,
which is illegal.

A more subtle version of this same error follows:

Example:

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address:
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content.replace(' ', ' '))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation. An indent may only follow a dictionary or list
item that does not already have a value, which in this case consists
only of whitespace.

4 « address: »
5 « > 3636 Buffalo Ave»

Notice the that follows address in content. These are replaced by 2 spaces before content is processed by loads.
Thus, in this case there is an extra space at the end of line 4. Anything beyond the: : is considered the value for

2.8. Common mistakes 23

NestedText, Release 1.2.0

address, and in this case that is the single extra space specified at the end of the line. This extra space is taken to be
the value of address, making the multiline string in lines 5 and 6 a value too many.

2.9 File format

The NestedText format follows a small number of simple rules. Here they are.

Encoding:

A NestedText document encoded in UTF-8.

Line breaks:

A NestedText document is partitioned into lines where the lines are split by CR LF, CR, or LF where CR
and LF are the ASCII carriage return and line feed characters. A single document may employ any or all
of these ways of splitting lines.

Line types:

Each line in a NestedText document is assigned one of the following types: comment, blank, list-item,
dict-item, and string-item. Any line that does not fit one of these types is an error.

Comments:

Comments are lines that have # as the first non-space character on the line. Comments are ignored.

Blank lines:

Blank lines are lines that are empty or consist only of white space characters (spaces or tabs). Blank lines
are also ignored.

Line-type tags:

The remaining lines are identifying by which one of these ASCII characters are found in an unquoted
portion of the line: dash (-), colon (:), or greater-than symbol (>) when followed immediately by a space
or newline. Once the first of one of these pairs has been found in the unquoted portion of the line, any
subsequent occurrences of any of the line-type tags are treated as simple text. For example:

- And the winner is: {winner}

In this case the leading - determines the type of the line and the : is simply treated as part of the
remaining text on the line.

String items:

If the first non-space character on a line is a greater-than symbol followed immediately by a space (>)
or a newline, the line is a string-item. Adjacent string-items with the same indentation level are combined
into a multiline string with their order being retained. Any leading white space that follows the space that
follows the greater-than symbol is retained, as is any trailing white space.

List items:

If the first non-space character on a line is a dash followed immediately by a space (-) or a newline, the
line is a list-item. Adjacent list-items with the same indentation level are combined into a list with their
order being retained. Each list-item has a single associated value.

Dictionary items:

If the line is not a string-item or a list item and it contains a colon followed by either a space (:) that
does not fall within a quoted key or is followed by a newline, the line is considered a dict-item. Adjacent
dict-items with the same indentation level are combined into a dictionary with their order being retained.
Each dict-item consists of a key, the tag (colon), and a value.

24 Chapter 2. Contributing

NestedText, Release 1.2.0

A key must be a string and it must not contain a newline. The key must be quoted if it:

1. starts with a list-item or string-item tag,

2. contains a dict-item tag,

3. starts with a quote character, or

4. has leading or trailing spaces or tabs.

A key is quoted by delimiting it with matching single or double quote characters, which are discarded. Un-
like traditional programming languages, a quoted key delimited with single quote characters may contain
additional single quote characters. Similarly, a quoted key delimited with double quote characters may
contain additional double quote characters. Also, backslash is not used as an escape character; backslash
has no special meaning anywhere in NestedText.

A quoted key starts with the leading quote character and ends when the matching quote character is found
along with a trailing colon (there may be white space between the closing quote and the colon). A key
is invalid if it contains two or more instances of a quote character separated from : by zero or more
space characters where the quote character in one is a single quote and the quote character in another is
the double quote. In this case the key cannot be quoted with either character so that the separator from the
key and value can be identified unambiguously.

Values:

The value associated with a list and dict item may take one of three forms.

If the line contains further text (characters after the dash-space or colon-space), then the value is that text.

If there is no further text on the line and the next line has greater indentation, then the next line holds the
value, which may be a list, a dictionary, or a multiline string.

Otherwise the value is empty; it is taken to be an empty string.

String values may contain any printing UTF-8 character.

Indentation:

An increase in the number of spaces in the indentation signifies the start of a nested object. Indentation
must return to a prior level when the nested object ends.

Each level of indentation need not employ the same number of additional spaces, though it is recom-
mended that you choose either 2 or 4 spaces to represent a level of nesting and you use that consistently
throughout the document. However, this is not required. Any increase in the number of spaces in the
indentation represents an indent and a decrease to return to a prior indentation represents a dedent.

An indent may only follow a list-item or dict-item that does not have a value on the same line.

Only spaces are allowed in the indentation. Specifically, tabs are not allowed.

Empty document:

A document may be empty. A document is empty if it consists only of comments and blank lines. An
empty document corresponds to an empty value of unknown type.

Result:

When a document is converted from NestedText the result is a hierarchical collection of dictionaries, lists
and strings where all leaf values are strings. All dictionary keys are also strings.

2.9. File format 25

NestedText, Release 1.2.0

2.10 Python API

nestedtext.dumps(obj, *[, sort_keys, . . .]) Recursively convert object to NestedText string.
nestedtext.dump(obj, f, **kwargs) Write the NestedText representation of the given object

to the given file.
nestedtext.loads(content[, top, source, on_dup]) Loads NestedText from string.
nestedtext.load([f, top, on_dup]) Loads NestedText from file or stream.
nestedtext.NestedTextError(*args,
**kwargs)

The load and dump functions all raise NestedTextError
when they discover an error.

2.10.1 nestedtext.dumps

nestedtext.dumps(obj, *, sort_keys=False, indent=4, renderers=None, default=None, level=0)
Recursively convert object to NestedText string.

Parameters

• obj – The object to convert to NestedText.

• sort_keys (bool or func) – Dictionary items are sorted by their key if sort_keys is
true. If a function is passed in, it is used as the key function.

• indent (int) – The number of spaces to use to represent a single level of indentation.
Must be one or greater.

• renderers (dict) – A dictionary where the keys are types and the values are render
functions (functions that take an object and convert it to a string). These will be used to
convert values to strings during the conversion.

• default (func or 'strict') – The default renderer. Use to render otherwise unrec-
ognized objects to strings. If not provided an error will be raised for unsupported data types.
Typical values are repr or str. If ‘strict’ is specified then only dictionaries, lists, strings, and
those types specified in renderers are allowed. If default is not specified then a broader col-
lection of value types are supported, including None, bool, int, float, and list- and dict-like
objects. In this case Booleans is rendered as ‘True’ and ‘False’ and None and empty lists
and dictionaries are rendered as empty strings.

• level (int) – The number of indentation levels. When dumps is invoked recursively this
is used to increment the level and so the indent. Generally not specified by the user, but can
be useful in unusual situations to specify an initial indent.

Returns The NestedText content.

Raises NestedTextError – if there is a problem in the input data.

Examples

>>> import nestedtext as nt

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

(continues on next page)

26 Chapter 2. Contributing

NestedText, Release 1.2.0

(continued from previous page)

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
name: Kristel Templeton
sex: female
age: 74

The NestedText format only supports dictionaries, lists, and strings and all leaf values must be strings. By
default, dumps is configured to be rather forgiving, so it will render many of the base Python data types, such
as None, bool, int, float and list-like types such as tuple and set by converting them to the types supported
by the format. This implies that a round trip through dumps and loads could result in the types of values being
transformed. You can restrict dumps to only supporting the native types of NestedText by passing default=’strict’
to dumps. Doing so means that values that are not dictionaries, lists, or strings generate exceptions; as do empty
dictionaries and lists.

>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
key: 42
value: 3.1415926
valid: True

>>> try:
... print(nt.dumps(data, default='strict'))
... except nt.NestedTextError as e:
... print(str(e))
42: unsupported type.

Alternatively, you can specify a function to default, which is used to convert values to strings. It is used if no
other converter is available. Typical values are str and repr.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __repr__(self):
... return f'Color({self.color!r})'
... def __str__(self):
... return self.color

>>> data['house'] = Color('red')
>>> print(nt.dumps(data, default=repr))
key: 42
value: 3.1415926
valid: True
house: Color('red')

>>> print(nt.dumps(data, default=str))
key: 42
value: 3.1415926
valid: True
house: red

You can also specify a dictionary of renderers. The dictionary maps the object type to a render function.

2.10. Python API 27

NestedText, Release 1.2.0

>>> renderers = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: lambda f: f'{f:0.3}',
... Color: lambda c: c.color,
... }

>>> try:
... print(nt.dumps(data, renderers=renderers))
... except nt.NestedTextError as e:
... print(str(e))
key: 0x2a
value: 3.14
valid: yes
house: red

If the dictionary maps a type to None, then the default behavior is used for that type. If it maps to False, then an
exception is raised.

>>> renderers = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: False,
... Color: lambda c: c.color,
... }

>>> try:
... print(nt.dumps(data, renderers=renderers))
... except nt.NestedTextError as e:
... print(str(e))
3.1415926: unsupported type.

Both default and renderers may be used together. renderers has priority over the built-in types and default.
When a function is specified as default, it is always applied as a last resort.

2.10.2 nestedtext.dump

nestedtext.dump(obj, f, **kwargs)
Write the NestedText representation of the given object to the given file.

Parameters

• obj – The object to convert to NestedText.

• f (str, os.PathLike, io.TextIOBase) – The file to write the NestedText content
to. The file can be specified either as a path (e.g. a string or a pathlib.Path) or as a text IO in-
stance (e.g. an open file). If a path is given, the will be opened, written, and closed. If an IO
object is given, it must have been opened in a mode that allows writing (e.g. open(path,
'w')), if applicable. It will be written and not closed.

The name used for the file is arbitrary but it is tradition to use a .nt suffix. If you also wish
to further distinguish the file type by giving the schema, it is recommended that you use two
suffixes, with the suffix that specifies the schema given first and .nt given last. For example:
flicker.sig.nt.

• kwargs – See dumps() for optional arguments.

Returns The NestedText content.

28 Chapter 2. Contributing

NestedText, Release 1.2.0

Raises

• NestedTextError – if there is a problem in the input data.

• OSError – if there is a problem opening the file.

Examples

This example writes to a pointer to an open file.

>>> import nestedtext as nt
>>> from inform import fatal, os_error

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... with open('data.nt', 'w', encoding='utf-8') as f:
... nt.dump(data, f)
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

This example writes to a file specified by file name. In general, the file name and extension are arbitrary.
However, by convention a ‘.nt’ suffix is generally used for NestedText files.

>>> try:
... nt.dump(data, 'data.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

2.10.3 nestedtext.loads

nestedtext.loads(content, top='dict', *, source=None, on_dup=None)
Loads NestedText from string.

Parameters

• content (str) – String that contains encoded data.

• top (str) – Top-level data type. The NestedText format allows for a dictionary, a list, or a
string as the top-level data container. By specifying top as ‘dict’, ‘list’, or ‘str’ you constrain
both the type of top-level container and the return value of this function. By specifying ‘any’
you enable support for all three data types, with the type of the returned value matching that
of top-level container in content. As a short-hand, you may specify the dict, list, str, and
any built-ins rather than specifying top with a string.

• source (str or Path) – If given, this string is attached to any error messages as the
culprit. It is otherwise unused. Is often the name of the file that originally contained the
NestedText content.

2.10. Python API 29

NestedText, Release 1.2.0

• on_dup (str or func) – Indicates how duplicate keys in dictionaries should be han-
dled. By default they raise exceptions. Specifying ‘ignore’ causes them to be ignored (first
wins). Specifying ‘replace’ results in them replacing earlier items (last wins). By specify-
ing a function, the keys can be de-duplicated. This call-back function returns a new key and
takes four arguments:

1. The new key (duplicates an existing key).

2. The new value.

3. The entire dictionary as it is at the moment the duplicate key is found.

4. The state; a dictionary that is created as the loads is called and deleted as it returns. Values
placed in this dictionary are retained between multiple calls to this call back function.

Returns The extracted data. The type of the return value is specified by the top argument. If top is
‘any’, then the return value will match that of top-level data container in the input content. If
content is empty, an empty data value is return of the type specified by top. If top is ‘any’ None
is returned.

Raises NestedTextError – if there is a problem in the NextedText content.

Examples

NestedText is specified to loads in the form of a string:

>>> import nestedtext as nt

>>> contents = """
... name: Kristel Templeton
... sex: female
... age: 74
... """

>>> try:
... data = nt.loads(contents, 'dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'name': 'Kristel Templeton', 'sex': 'female', 'age': '74'}

loads() takes an optional argument, source. If specified, it is added to any error messages. It is often used to
designate the source of contents. For example, if contents were read from a file, source would be the file name.
Here is a typical example of reading NestedText from a file:

>>> filename = 'examples/duplicate-keys.nt'
>>> try:
... with open(filename, encoding='utf-8') as f:
... addresses = nt.loads(f.read(), source=filename)
... except nt.NestedTextError as e:
... print(e.render())
... print(*e.get_codicil(), sep="\n")
examples/duplicate-keys.nt, 5: duplicate key: name.

4 «name:»
5 «name:»

30 Chapter 2. Contributing

NestedText, Release 1.2.0

Notice in the above example the encoding is explicitly specified as ‘utf-8’. NestedText files should always be
read and written using utf-8 encoding.

The following examples demonstrate the various ways of handling duplicate keys:

>>> content = """
... key: value 1
... key: value 2
... key: value 3
... name: value 4
... name: value 5
... """

>>> print(nt.loads(content))
Traceback (most recent call last):
...
nestedtext.NestedTextError: 3: duplicate key: key.

>>> print(nt.loads(content, on_dup='ignore'))
{'key': 'value 1', 'name': 'value 4'}

>>> print(nt.loads(content, on_dup='replace'))
{'key': 'value 3', 'name': 'value 5'}

>>> def de_dup(key, value, data, state):
... if key not in state:
... state[key] = 1
... state[key] += 1
... return f"{key}#{state[key]}"

>>> print(nt.loads(content, on_dup=de_dup))
{'key': 'value 1', 'key#2': 'value 2', 'key#3': 'value 3', 'name': 'value 4',
→˓'name#2': 'value 5'}

2.10.4 nestedtext.load

nestedtext.load(f=None, top='dict', *, on_dup=None)
Loads NestedText from file or stream.

Is the same as loads() except the NextedText is accessed by reading a file rather than directly from a string.
It does not keep the full contents of the file in memory and so is more memory efficient with large files.

Parameters

• f (str, os.PathLike, io.TextIOBase, collections.abc.Iterator) –
The file to read the NestedText content from. This can be specified either as a path (e.g. a
string or a pathlib.Path), as a text IO object (e.g. an open file), or as an iterator. If a path
is given, the file will be opened, read, and closed. If an IO object is given, it will be read
and not closed; utf-8 encoding should be used.. If an iterator is given, it should generate full
lines in the same manner that iterating on a file descriptor would.

• kwargs – See loads() for optional arguments.

Returns The extracted data. See loads() description of the return value.

Raises

• NestedTextError – if there is a problem in the NextedText content.

• OSError – if there is a problem opening the file.

2.10. Python API 31

NestedText, Release 1.2.0

Examples

Load from a path specified as a string:

>>> import nestedtext as nt
>>> print(open('examples/groceries.nt').read())
groceries:
- Bread
- Peanut butter
- Jam

>>> nt.load('examples/groceries.nt')
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from a pathlib.Path:

>>> from pathlib import Path
>>> nt.load(Path('examples/groceries.nt'))
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from an open file object:

>>> with open('examples/groceries.nt') as f:
... nt.load(f)
...
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

2.10.5 nestedtext.NestedTextError

exception nestedtext.NestedTextError(*args, **kwargs)
The load and dump functions all raise NestedTextError when they discover an error. NestedTextError subclasses
both the Python ValueError and the Error exception from Inform. You can find more documentation on what
you can do with this exception in the Inform documentation.

The exception provides the following attributes:

source:

The source of the NestedText content, if given. This is often a filename.

line:

The text of the line of NestedText content where the problem was found.

lineno:

The number of the line where the problem was found.

colno:

The number of the character where the problem was found on line.

prev_line:

The text of the meaningful line immediately before where the problem was found. This would not be
a comment or blank line.

template:

The possibly parameterized text used for the error message.

32 Chapter 2. Contributing

https://inform.readthedocs.io/en/stable/api.html#exceptions

NestedText, Release 1.2.0

As with most exceptions, you can simply cast it to a string to get a reasonable error message.

>>> from textwrap import dedent
>>> import nestedtext as nt

>>> content = dedent("""
... name1: value1
... name1: value2
... name3: value3
... """).strip()

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(str(e))
2: duplicate key: name1.

You can also use the report method to print the message directly. This is appropriate if you are using inform for
your messaging as it follows inform’s conventions:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.report()
error: 2: duplicate key: name1.

«name1: value2»

The terminate method prints the message directly and exits:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.terminate()
error: 2: duplicate key: name1.

«name1: value2»

With exceptions generated from load() or loads() you may see extra lines at the end of the message that
show the problematic lines if you have the exception report itself as above. Those extra lines are referred to as
the codicil and they can be very helpful in illustrating the actual problem. You do not get them if you simply
cast the exception to a string, but you can access them using NestedTextError.get_codicil(). The
codicil or codicils are returned as a tuple. You should join them with newlines before printing them.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(*e.get_codicil(), sep="\n")
duplicate key: name1.

1 «name1: value1»
2 «name1: value2»

Note the « and » characters in the codicil. They delimit the extend of the text on each line and help you see
troublesome leading or trailing white space.

Exceptions produced by NestedText contain a template attribute that contains the basic text of the message. You
can change this message by overriding the attribute using the template argument when using report, terminate,

2.10. Python API 33

NestedText, Release 1.2.0

or render. render is like casting the exception to a string except that allows for the passing of arguments. For
example, to convert a particular message to Spanish, you could use something like the following.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... template = None
... if e.template == 'duplicate key: {}.':
... template = 'llave duplicada: {}.'
... print(e.render(template=template))
2: llave duplicada: name1.

• genindex

34 Chapter 2. Contributing

INDEX

D
dump() (in module nestedtext), 28
dumps() (in module nestedtext), 26

L
load() (in module nestedtext), 31
loads() (in module nestedtext), 29

N
NestedTextError, 32

35

	Related Projects
	Contributing
	Index

