

NestedText: A Human Friendly Data Format

[image: _images/master.svg]
 [https://travis-ci.org/KenKundert/nestedtext][image: _images/nestedtext.svg]
 [https://coveralls.io/r/KenKundert/nestedtext][image: _images/nestedtext1.svg]
 [https://pypi.python.org/pypi/nestedtext][image: _images/nestedtext2.svg]
 [https://pypi.python.org/pypi/nestedtext]
Authors: Ken & Kale Kundert

Version: 2.0.0

Released: 2021-05-28

Documentation: nestedtext.org [https://nestedtext.org].

Please post all questions, suggestions, and bug reports to: Github [https://github.com/KenKundert/nestedtext/issues].

NestedText is a file format for holding data that is to be entered, edited, or
viewed by people. It allows data to be organized into a nested collection of
dictionaries, lists, and strings. In this way it is similar to JSON, YAML
and TOML, but without the complexity and risk of YAML and without the
syntactic clutter of JSON and TOML. NestedText is both simple and
natural. Only a small number of concepts and rules must be kept in mind when
creating it. It is easily created, modified, or viewed with a text editor and
easily understood and used by both programmers and non-programmers.

NestedText is convenient for configuration files, address books, account
information and the like. Here is an example of a file that contains a few
addresses:

Contact information for our officers

president:
 name: Katheryn McDaniel
 address:
 > 138 Almond Street
 > Topeka, Kansas 20697
 phone:
 cell: 1-210-555-5297
 home: 1-210-555-8470
 # Katheryn prefers that we always call her on her cell phone.
 email: KateMcD@aol.com
 additional roles:
 - board member

vice president:
 name: Margaret Hodge
 address:
 > 2586 Marigold Lane
 > Topeka, Kansas 20682
 phone: 1-470-555-0398
 email: margaret.hodge@ku.edu
 additional roles:
 - new membership task force
 - accounting task force

treasurer:
 -
 name: Fumiko Purvis
 address:
 > 3636 Buffalo Ave
 > Topeka, Kansas 20692
 phone: 1-268-555-0280
 email: fumiko.purvis@hotmail.com
 additional roles:
 - accounting task force
 -
 name: Merrill Eldridge
 # Fumiko's term is ending at the end of the year.
 # She will be replaced by Merrill.
 phone: 1-268-555-3602
 email: merrill.eldridge@yahoo.com

The format holds dictionaries (ordered collections of name/value pairs), lists
(ordered collections of values) and strings (text) organized hierarchically to
any depth. Indentation is used to indicate the hierarchy of the data, and
a simple natural syntax is used to distinguish the types of data in such
a manner that it is not easily confused. Specifically, lines that begin with a
word (or words) followed by a colon are dictionary items, lines that begin with
a dash are list items, lines that begin with a greater-than sign are part of
a multiline string, and lines that begin with a hash are comments and are
ignored. Dictionaries and lists can be nested arbitrarily.

NestedText is somewhat unique in that the leaf values are always strings. Of
course the values start off as strings in the input file, but alternatives like
YAML or TOML aggressively convert those values into the underlying data
types such as integers, floats, and Booleans. For example, a value like 2.10
would be converted to a floating point number. But making the decision to do so
based purely on the form of the value, not the context in which it is found, can
lead to misinterpretations. For example, assume that this value is the software
version number two point ten. By converting it to a floating point number it
becomes two point one, which is wrong. There are many possible versions of this
basic issue. But there is also the inverse problem; values that should be
converted to particular data types but are not recognized. For example, a value
of $2.00 should be converted to a real number but would remain a string instead.
There are simply too many values types for a general purpose solution that is
only looking at the values themselves to be able to interpret all of them. For
example, 12/10/09 is likely a date, but is it in MM/DD/YY, YY/MM/DD or DD/MM/YY
form? The fact is, the value alone is often insufficient to reliably determine
how to convert values into internal data types. NestedText avoids these
problems by leaving the values in their original form and allowing the decision
to be made by the end application where more context is available to help guide
the conversions. If a price is expected for a value, then $2.00 would be
checked and converted accordingly. Similarly, local conventions along with the
fact that a date is expected for a particular value allows 12/10/09 to be
correctly validated and converted. This process of validation and conversion is
referred to as applying a schema to the data. There are packages such as
Pydantic [https://pydantic-docs.helpmanual.io] and Voluptuous [https://github.com/alecthomas/voluptuous] available that make this process
easy and reliable.

String values in NestedText can hold any printing character or character
sequence without the need for quoting or escaping. This makes NestedText
particularly convenient for holding code snippets. The code can be included
without modification, and without the complexity and visual clutter the comes
with the need to quote or escape special characters.

Note

This version contains some significant changes from version 1.3.0. It
should be considered an trial version, meaning that the changes it contains
may be abandoned or modified before the next stable release. Some of these
changes are not backward compatible. Feel free to comment on changes in
GitHub Issues [https://github.com/KenKundert/nestedtext/issues].

Language changes:

	Removal of quoted keys

	Addition of multiline keys

	Addition of single line lists and dictionaries

Python implementation changes:

	Removal of level parameter to dump and dumps functions.

	Addition of width parameter to dump and dumps functions.

	Replaced renderers argument with converters on dump and dumps
functions.

Related Projects

nestedtext docs [https://nestedtext.org]

NestedText documentation.

nestedtext spec [https://github.com/kenkundert/nestedtext]

Language specification and Python implementation.

nestedtext_tests [https://github.com/kenkundert/nestedtext_tests]

Official NestedText test suite. Also included as submodule in
nestedtext [https://github.com/kenkundert/nestedtext].

parametrize from file [https://github.com/kalekundert/parametrize_from_file]

Separate your test cases, held in NestedText, from your PyTest [https://docs.pytest.org] test code.

vim-nestedtext [https://github.com/kalekundert/vim-nestedtext]

Vim syntax files for NestedText.

visual studio [https://marketplace.visualstudio.com/items?itemName=bmarkovic17.nestedtext]

Syntax files for Visual Studio.

zig-nestedtext [https://github.com/LewisGaul/zig-nestedtext]

Zig [https://ziglang.org] implementation of NestedText.

Contributing

This package contains a Python reference implementation of NestedText and
a test suite. Implementation in many languages is required for NestedText to
catch on widely. If you like the format, please consider contributing
additional implementations.

Language

	Philosophy

	Alternatives

	Language introduction

	Language reference

	Language changes

Python Implementation

	Basic use

	Schemas

	Examples

	Common mistakes

	Python API

	Releases

The Zen of NestedText

NestedText aspires to be a simple dumb vessel that holds peoples’ structured
data, and does so in a way that allows people to easily interact with that
data.

The desire to be simple is an attempt to minimize the effort required to learn
and use the language. Ideally people can understand it by looking at a few
examples and they can use it without without needing to remember any arcane
rules and without relying on any of the knowledge that programmers accumulate
through years of experience. One source of simplicity is consistency. As such,
NestedText uses a small number of rules that it applies with few exceptions.

The desire to be dumb means that NestedText tries not to transform the data
in any meaningful way. It parses the structure of the data without doing
anything that might change how the data is interpreted. Instead, it aims to
make it easy for you to interpret the data yourself. After all, you understand
what the data is supposed to mean, so you are in the best position to interpret
it. There are also many powerful tools available to help with this exact
task.

Alternatives

There are no shortage of well established alternatives to NestedText for
storing data in a human-readable text file. The features and shortcomings of
some of these alternatives are discussed next.

JSON

JSON [https://www.json.org/json-en.html] is a subset of JavaScript suitable for holding data. Like NestedText,
it consists of a hierarchical collection of dictionaries, lists, and strings,
but also allows integers, floats, Booleans and nulls. The fundamental problem
with JSON in this context is that its meant for serializing and exchanging
data between programs; it’s not meant for configuration files. Of course, it’s
used for this purpose anyways, where it has a number of glaring shortcomings.

To begin, it has an excessive amount of syntactic clutter. Dictionary keys and
strings both have to be quoted, commas are required between dictionary and list
items (but forbidden after the last item), braces are required around
dictionaries, etc. Features that would improve clarity are also lacking.
Comments are not allowed, multiline strings are not supported, and whitespace
is insignificant (leading to the possibility that the appearance of the data may
not match its true structure). More conceptually, it is the responsibility of
the user to provide data of the correct type (e.g. 32 vs. 32.0 vs.
"32"), even though the application already knows what type it expects. All
of this results in JSON being a frustrating format for humans to read, enter
or edit.

NestedText has the following clear advantages over JSON as human readable
and writable data file format:

	text does not require quotes

	data is left in its original form

	comments

	multiline strings

	special characters without escaping them

	commas are not used to separate dictionary and list items

YAML

YAML [https://yaml.org/] is considered by many to be a human friendly alternative to JSON, but
over time it has accumulated too many data types and too many formats. To
distinguish between all the various types and formats, a complicated and
non-intuitive set of rules developed. YAML at first appears very appealing
when used with simple examples, but things can quickly become complicated or
provide unexpected results. A reaction to this is the use of YAML subsets,
such as StrictYAML. However, the subsets still try to maintain compatibility
with YAML and so inherit much of its complexity. For example, both YAML and
StrictYAML support nine different ways of writing multiline strings [http://stackoverflow.com/a/21699210/660921].

YAML avoids excessive quoting and supports comments and multiline strings,
but like JSON it converts data to the underlying data types as appropriate,
but unlike with JSON, the lack of quoting makes the format ambiguous, which
means it has to guess at times, and small seemingly insignificant details can
affect the result.

NestedText was inspired by YAML, but eschews its complexity. It has the
following clear advantages over YAML as human readable and writable data file
format:

	simple

	unambiguous (no implicit typing)

	data is left in its original form

	syntax is insensitive to special characters within text

	safe, no risk of malicious code execution

TOML

TOML [https://toml.io/en/] is a configuration file format inspired by the well-known INI syntax.
It supports a number of basic data types (notably including dates and times)
using syntax that is more similar to JSON (explicit but verbose) than to
YAML (succinct but confusing). As discussed previously, though, this makes
it the responsibility of the user to specify the correct type for each field,
when it should be the responsibility of the application to convert each field
to the correct type.

Another flaw in TOML is that it is difficult to specify deeply nested
structures. The only way to specify a nested dictionary is to give the full
key to that dictionary, relative to the root of the entire hierarchy. This is
not much a problem if the hierarchy only has 1-2 levels, but any more than that
and you find yourself typing the same long keys over and over. A corollary to
this is that TOML-based configurations do not scale well: increases in
complexity are often accompanied by disproportionate decreases in readability
and writability.

NestedText has the following clear advantages over TOML as human readable
and writable data file format:

	text does not require quotes

	data is left in its original form

	indentation used to succinctly represent nested data

	the structure of the file matches the structure of the data

Language introduction

This is a overview of the syntax of a NestedText document, which consists of
a nested collection of dictionaries,
lists, and strings. All leaf values must be
simple text or an empty dictionary or list. You can find more specifics
later on.

Dictionaries

A dictionary is an ordered collection of key value pairs:

key 1: value 1
key 2: value 2
key 3: value 3

A dictionary item is a single key value pair. A dictionary is all adjacent
dictionary items in which the keys all begin at the same level of indentation.

In the first form, the key and value are separated with a colon (:) followed
by either a space or a newline. The key must be a string and must not contain
newline characters, leading or trailing spaces, or the :␣ character
sequence. Any spaces between the key and the colon are ignored.

The value of this dictionary item may be a rest-of-line string, a multiline
string, a list, or a dictionary. If it is a rest-of-line string, it contains all
characters following the tag that separates the key from the value (:␣).
For all other values, the rest of the line must be empty, with the value given
on the next line, which must be further indented.

key 1: value 1
key 2:
 - value 2a
 - value 2b
key 3:
 key 3a: value 3a
 key 3b: value 3b

A second less common form of a dictionary item employs multiline keys. In this
case there are no limitations on the key other than it be a string. Each line
of a multiline key is introduced with a colon (:) followed by a space or
newline. The key is all adjacent lines at the same level that start with
a colon tag with the tags removed but leading and trailing white space retained,
including all newlines except the last.

This form of dictionary does not allow rest-of-line string values; you would use
a multiline string value instead:

: key 1
: the first key
 > value 1
: key 2: the second key
 - value 2a
 - value 2b

A dictionary may consist of dictionary items of either form.

The final form of a dictionary is the inline dictionary. This is a compact form
where all the dictionary items are given on the same line. There is a bit of
syntax that defines inline dictionaries, so the keys and values are constrained
to avoid ambiguities in the syntax. An inline dictionary starts with an opening
brace ({), ends with a matching closing brace (}), and contains inline
dictionary items separated by commas (,). An inline dictionary item is a key
and value separated by a colon (:). A space need not follow the colon and
any spaces that do follow the colon are ignored. The keys are inline strings and
the values may be inline strings, inline lists, and inline dictionaries. For
example:

{key 1: value 1, key 2: value 2, key 3: value 3}

{key 1: value 1, key 2: [value 2a, value 2b], key 3: {key 3a: value 3a, key 3b: value 3b}}

Lists

A list is an ordered collection of values:

- value 1
- value 2
- value 3

A list item is introduced with a dash followed by a space or a newline at the
start of a line. All adjacent list items at the same level of indentation form
the list.

The value of a list item may be a rest-of-line string, a multiline string,
a list, or a dictionary. If it is a rest-of-line string, it contains all
characters that follow the -␣ that introduces the list item. For all other
values, the rest of the line must be empty, with the value given on the next
line, which must be further indented.

- value 1
-
 key 2a: value 2a
 key 2b: value 2b

Another form of a list is the inline list. This is a compact form where all
the list items are given on the same line. There is a bit of syntax that
defines the list, so the values are constrained to avoid ambiguities in the
syntax. An inline list starts with an opening bracket ([), ends with
a matching closing bracket (]), and contains inline values separated by
commas. The values may be inline strings, inline lists, and inline
dictionaries. For example:

[value 1, value 2, value 3]

[value 1, [value 2a, value 2b], {key 3a: value 3a, key 3b: value 3b}]

Strings

There are three types of strings: rest-of-line strings, multiline strings, and
inline strings. Rest-of-line strings are simply all the remaining characters on
the line, including any leading or trailing white space. They can contain any
character other than newline:

code : input signed [7:0] level
regex : [+-]?([0-9]*[.])?[0-9]+\s*\w*
math : $x = \frac{{-b \pm \sqrt {b^2 - 4ac}}}{2a}$
unicode: José and François

Multi-line strings are specified on lines prefixed with the greater-than symbol
followed by a space or a newline. The content of each line starts after the
first space that follows the greater-than symbol:

> This is the first line of a multiline string, it is indented.
> This is the second line, it is not indented.

You can include empty lines in the string simply by specifying the greater-than
symbol alone on a line:

>
> “The worth of a man to his society can be measured by the contribution he
> makes to it — less the cost of sustaining himself and his mistakes in it.”
>
> — Erik Jonsson
>

The multiline string is all adjacent lines that start with a greater than tag
with the tags removed and the lines joined together with newline characters
inserted between each line. Except for the space that separates the tag from
the text, white space from both the beginning and the end of each line is
retained, along with all newlines except the last.

Inline strings are the string values specified in inline dictionaries and lists.
They are somewhat constrained in the characters that they may contain; nothing
that might be confused with syntax characters used by the inline list or
dictionary that contains it. Specifically, inline strings may not contain
newlines or any of the following characters: [,], {, }, or
,. In addition, inline strings that are contained in inline dictionaries
may not contain :. Leading and trailing white space are ignored with inline
strings.

Comments

Lines that begin with a hash as the first non-white-space character, or lines
that are empty or consist only of white space are comment lines and are ignored.
Indentation is not significant on comment lines.

this line is ignored

this line is also ignored, as is the blank line above.

Nesting

A value for a dictionary or list item may be a rest-of-line string or it may be
a nested dictionary, list, multiline string, or inline dictionary or list.
Indentation is used to indicate nesting. Indentation increases to indicate the
beginning of a new nested object, and indentation returns to a prior level to
indicate its end. In this way, data can be nested to an arbitrary depth:

Contact information for our officers

president:
 name: Katheryn McDaniel
 address:
 > 138 Almond Street
 > Topeka, Kansas 20697
 phone:
 cell: 1-210-555-5297
 work: 1-210-555-3423
 home: 1-210-555-8470
 # Katheryn prefers that we always call her on her cell phone.
 email: KateMcD@aol.com
 kids:
 - Joanie
 - Terrance

vice president:
 name: Margaret Hodge
 address:
 > 2586 Marigold Lane
 > Topeka, Kansas 20697
 phone:
 {cell: 1-470-555-0398, home: 1-470-555-7570}
 email: margaret.hodge@ku.edu
 kids:
 [Arnie, Zach, Maggie]

It is recommended that each level of indentation be represented by a consistent
number of spaces (with the suggested number being 2 or 4). However, it is not
required. Any increase in the number of spaces in the indentation represents an
indent and the number of spaces need only be consistent over the length of the
nested object.

The data can be nested arbitrarily deeply.

NestedText Files

NestedText files should be encoded with UTF-8 [https://en.wikipedia.org/wiki/UTF-8].

The name used for the file is arbitrary but it is tradition to use a
.nt suffix. If you also wish to further distinguish the file type
by giving the schema, it is recommended that you use two suffixes,
with the suffix that specifies the schema given first and .nt given
last. For example: officers.addr.nt.

Language reference

The NestedText format follows a small number of simple rules. Here they are.

Encoding:

A NestedText document is encoded in UTF-8.

Line breaks:

A NestedText document is partitioned into lines where the lines are split
by CR LF, CR, or LF where CR and LF are the ASCII carriage return and line
feed characters. A single document may employ any or all of these ways of
splitting lines.

Line types:

Each line in a NestedText document is assigned one of the following types:
comment, blank, list item, dict item, string item, key item or
inline. Any line that does not fit one of these types is an error.

Blank lines:

Blank lines are lines that are empty or consist only of white space
characters (spaces or tabs). Blank lines are ignored.

Line-type tags:

Most remaining lines are identifying by the presence of tags, where a tag is
the first dash (-), colon (:), or greater-than symbol (>) on
a line when followed immediately by a space or line break, or a hash
{#), left bracket ([), or left brace ({) as the first no-white
space character on a line.

Most of these symbols only introduce tags when they are the first non-space
character on a line, but colon tags need not start the line.

The first (left-most) tag on a line determines the line type. Once the
first tag has been found on the line, any subsequent occurrences of any of
the line-type tags are treated as simple text. For example:

- And the winner is: {winner}

In this case the leading -␣ determines the type of the line and the
:␣ is simply treated as part of the remaining text on the line.

Comments:

Comments are lines that have # as the first non-white-space character on
the line. Comments are ignored.

String items:

If the first non-space character on a line is a greater-than symbol followed
immediately by a space (>␣) or a line break, the line is a string
item. After comments and blank lines have been removed, adjacent string
items with the same indentation level are combined in order into
a multiline string. The string value is the multiline string with the
tags removed. Any leading white space that follows the tag is retained, as
is any trailing white space and all newlines except the last.

String values may contain any printing UTF-8 character.

List items:

If the first non-space character on a line is a dash followed immediately by
a space (-␣) or a line break, the line is a list item. Adjacent list
items with the same indentation level are combined in order into a list
value. Each list item has a tag and a value. The tag is only used to
determine the type of the line and is discarded leaving the value. The
value takes one of three forms.

	If the line contains further text (characters after the dash-space), then
the value is that text. The text ends at the line break and may contain
any other printing UTF-8 character.

	If there is no further text on the line and the next line has greater
indentation, then the next line holds the value, which may be a list,
a dictionary, or a multiline string.

	Otherwise the value is empty; it is taken to be an empty string.

Key items:

If the first non-space character on a line is a colon followed immediately
by a space (:␣) or a line break, the line is a key item. After
comments and blank lines have been removed, adjacent key items with the same
indentation level are combined in order into a multiline key. The key
value is the multiline string with the tags removed. Any leading white
space that follows the tag is retained, as is any trailing white space and
all newlines except the last.

Key values may contain any printing UTF-8 character.

An indented value must follow a multiline key. The indented value may be
either a multiline string, a list or a dictionary. The combination of the
key item and its value forms a dict item.

Dictionary items:

Dictionary items take two possible forms.

The first is a dict item with inline key. In this case the line does not
start with a tag, but instead contains an interior dict tag: a colon
followed by either a space (:␣) or a line break where the colon is not
the first non-space character on the line. The dict item consists of a key,
the tag, and a value. Any space between the key and the tag is ignored.

The inline key precedes the tag. It must be a string and must not:

	contain a line break character.

	start with a list item, string item or key item tag,

	contain a dict item tag, or

	contain leading or trailing spaces (any spaces that follow the key are
ignored).

The tag is only used to determine the type of the line and is discarded
leaving the value, which follows the tag. The value takes one of three
forms.

	If the line contains further text (characters after the colon-space),
then the value is that text. The text ends at the line break and may
contain any other printing UTF-8 character.

	If there is no further text on the line and the next line has greater
indentation, then the next line holds the value, which may be a list,
a dictionary, or a multiline string.

	Otherwise the value is empty; it is taken to be an empty string.

The second form of dict item is the dict item with multiline key. It
consists of a multiline key value followed by an indented multiline
string, list, or dictionary.

Adjacent dict items of either form with the same indentation level are
combined in order into a dictionary value.

Inline Lists and Dictionaries:

If the first character on a line is either a left bracket ([) or a left
brace ({) the line is an inline structure. A bracket introduces an
inline list and a brace introduces an inline dictionary.

An inline list starts with an open bracket ([), ends with a matching
closed bracket (]), contains inline values separated by commas (,),
and is contained on a single line. The values may be inline strings, inline
lists, and inline dictionaries.

An inline dictionary starts with an open brace ({), ends with a matching
closed brace (}), contains inline dictionary items separated by commas
(,), and is contained on a single line. An inline dictionary item is
a key and value separated by a colon (:). A space need not follow the
colon and any spaces that do follow the colon are ignored. The keys are
inline strings and the values may be inline strings, inline lists, and
inline dictionaries.

Both inline lists and dictionaries may be empty, and represent the only way
to represent empty lists or empty dictionaries in NestedText.

Inline strings are the string values specified in inline dictionaries and
lists. They are somewhat constrained in the characters that they may
contain; nothing that might be confused with syntax characters used by the
inline list or dictionary that contains it. Specifically, inline strings
may not contain newlines or any of the following characters: [,],
{, }, or ,. In addition, inline strings that are contained in
inline dictionaries may not contain :. Leading and trailing white space
are ignored with inline strings.

Empty inline strings must be followed by a comma to be recognized. For
example, [] is an empty list and [,] is a list that contains
a single empty string.

Indentation:

There is no indentation on the top-level object.

An increase in the number of spaces in the indentation signifies the start
of a nested object. Indentation must return to a prior level when the
nested object ends.

Each level of indentation need not employ the same number of additional
spaces, though it is recommended that you choose either 2 or 4 spaces to
represent a level of nesting and you use that consistently throughout the
document. However, this is not required. Any increase in the number of
spaces in the indentation represents an indent and a decrease to return to
a prior indentation represents a dedent.

An indented value may only follow a list item or dict item that does not
have a value on the same line. An indented value must follow a key item.

Only ASCII spaces are allowed in the indentation. Specifically, tabs and the
various Unicode spaces are not allowed.

Escaping and Quoting:

There is no escaping or quoting in NestedText. Once the line has been
identified by its tag, and the tag is removed, the remaining text is taken
literally.

Empty document:

A document may be empty. A document is empty if it consists only of
comments and blank lines. An empty document corresponds to an empty value
of unknown type.

Result:

When a document is converted from NestedText the result is a hierarchical
collection of dictionaries, lists and strings. All dictionary keys are
strings.

Language changes

Currently the language and the Python implementation share version numbers.
Since the language is more stable than the implementation, you will see versions
that include no changes to the language.

Latest development version

Version: 2.0.0

Released: 2021-05-28

v2.0 (2021-05-28)

	Deprecate quoted dictionary keys.

	Add multiline dictionary keys to replace quoted keys.

	Add single-line lists and dictionaries.

Warning

Be aware that this version is not backward compatible because it no
longer supports quoted dictionary keys.

v1.3 (2021-01-02)

	No changes.

v1.2 (2020-10-31)

	Treat CR LF, CR, or LF as a line break.

v1.1 (2020-10-13)

	No changes.

v1.0 (2020-10-03)

	Initial release.

Basic use

The NestedText Python API is similar to that of JSON, YAML, TOML, etc.

Installation

pip3 install --user nestedtext

NestedText Reader

The loads() function is used to convert NestedText held in a string into
a Python data structure. If there is a problem interpreting the input text,
a NestedTextError exception is raised.

>>> import nestedtext as nt

>>> content = """
... access key id: 8N029N81
... secret access key: 9s83109d3+583493190
... """

>>> try:
... data = nt.loads(content, 'dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'access key id': '8N029N81', 'secret access key': '9s83109d3+583493190'}

You can also read directly from a file or stream using the load()
function.

>>> from inform import fatal, os_error

>>> try:
... groceries = nt.load('examples/groceries.nt', 'dict')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

>>> print(groceries)
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Notice that the type of the return value is specified to be ‘dict’. This is the
default. You can also specify ‘list’, ‘str’, or ‘any’ (or dict, list, str,
or any). All but ‘any’ constrain the data type of the top-level of the
NestedText content.

More advanced usage is described in loads().

NestedText Writer

The dumps() function is used to convert a Python data structure into
a NestedText string. As before, if there is a problem converting the input
data, a NestedTextError exception is raised.

>>> try:
... content = nt.dumps(data)
... except nt.NestedTextError as e:
... e.terminate()

>>> print(content)
access key id: 8N029N81
secret access key: 9s83109d3+583493190

The dump() function writes NestedText to a file or stream.

>>> try:
... nt.dump(data, 'examples/access.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

More advanced usage is described in dumps().

Schemas

Because NestedText explicitly does not attempt to interpret the data it
parses, it is meant to be paired with a tool that can both validate the data
and convert them to the expected types. For example, if you are expecting a
date for a particular field, you would want to validate that the input looks
like a date (e.g. YYYY/MM/DD) and then convert it to a useful type (e.g.
arrow.Arrow). You can do this on an ad hoc basis, or you can apply
a schema.

A schema is the specification of what fields are expected (e.g. “birthday”),
what types they should be (e.g. a date), and what values are legal (e.g. must
be in the past). There are many libraries available for applying a schema to
data such as those parsed by NestedText. Because different libraries may be
more or less appropriate in different scenarios, NestedText avoids favoring
any one library specifically:

	pydantic [https://pydantic-docs.helpmanual.io/]: Define schema using type annotations

	voluptuous [https://github.com/alecthomas/voluptuous]: Define schema using objects

	schema [https://github.com/keleshev/schema]: Define schema using objects

	colander [https://docs.pylonsproject.org/projects/colander/en/latest/]: Define schema using classes

	schematics [http://schematics.readthedocs.io/en/latest/]: Define schema using classes

	cerebus [https://docs.python-cerberus.org/en/stable/] : Define schema using strings

	valideer [https://github.com/podio/valideer]: Define schema using strings

	jsonschema [https://python-jsonschema.readthedocs.io/en/latest/]: Define schema using JSON

See the Examples page for examples of how to use some of these libraries
with NestedText.

The approach of using separate tools for parsing and interpreting the data has
two significant advantages that are worth briefly highlighting. First is that
the validation tool understands the context and meaning of the data in a way
that the parsing tool cannot. For example, “12” can be an integer if it
represents a day of a month, a float if it represents the output voltage of a
power brick, or a string if represents the version of a software package.
Attempting to interpret “12” without this context is inherently unreliable.
Second is that when data is interpreted by the parser, it puts the onus on the
user to specify the correct types. Going back to the previous example, the
user would be required to know whether 12, 12.0, or "12" should be
entered. It does not make sense for this decision to be made by the user
instead of the application.

Examples

Validate with Pydantic

This example shows how to use pydantic [https://pydantic-docs.helpmanual.io] to validate and parse a NestedText
file. The file in this case specifies deployment settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
 - www.example.com

database:
 engine: django.db.backends.mysql
 host: db.example.com
 port: 3306
 user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note that basic types like integers,
strings, Booleans, and lists are specified using standard type annotations.
Dictionaries with specific keys are represented by model classes, and it is
possible to reference one model from within another. Pydantic [https://pydantic-docs.helpmanual.io] also has
built-in support for validating email addresses, which we can take advantage of
here:

#!/usr/bin/env python3

import nestedtext as nt
from pydantic import BaseModel, EmailStr
from typing import List
from pprint import pprint

class Database(BaseModel):
 engine: str
 host: str
 port: int
 user: str

class Config(BaseModel):
 debug: bool
 secret_key: str
 allowed_hosts: List[str]
 database: Database
 webmaster_email: EmailStr

obj = nt.load('deploy.nt')
config = Config.parse_obj(obj)

pprint(config.dict())

This produces the following data structure:

{'allowed_hosts': ['www.example.com'],
 'database': {'engine': 'django.db.backends.mysql',
 'host': 'db.example.com',
 'port': 3306,
 'user': 'www'},
 'debug': False,
 'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
 'webmaster_email': 'admin@example.com'}

Validate with Voluptuous

This example shows how to use voluptuous [https://github.com/alecthomas/voluptuous] to validate and parse a NestedText
file. The input file is the same as in the previous example, i.e. deployment
settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
 - www.example.com

database:
 engine: django.db.backends.mysql
 host: db.example.com
 port: 3306
 user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note how the structure of the data is
specified using basic Python objects. The Coerce() function is
necessary to have voluptuous convert string input to the given type; otherwise
it would simply check that the input matches the given type:

#!/usr/bin/env python3

import nestedtext as nt
from voluptuous import Schema, Coerce
from pprint import pprint

schema = Schema({
 'debug': Coerce(bool),
 'secret_key': str,
 'allowed_hosts': [str],
 'database': {
 'engine': str,
 'host': str,
 'port': Coerce(int),
 'user': str,
 },
 'webmaster_email': str,
})
raw = nt.load('deploy.nt')
config = schema(raw)

pprint(config)

This produces the following data structure:

{'allowed_hosts': ['www.example.com'],
 'database': {'engine': 'django.db.backends.mysql',
 'host': 'db.example.com',
 'port': 3306,
 'user': 'www'},
 'debug': False,
 'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
 'webmaster_email': 'admin@example.com'}

JSON to NestedText

This example implements a command-line utility that converts a JSON file to
NestedText. It demonstrates the use of dumps() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a JSON file and convert it to NestedText.

usage:
 json-to-nestedtext [options] [<filename>]

options:
 -f, --force force overwrite of output file
 -i <n>, --indent <n> number of spaces per indent [default: 4]
 -w <n>, --width <n> desired maximum line width; specifying enables
 use of single-line lists and dictionaries as long
 as the fit in given width [default: 0]

If <filename> is not given, json input is taken from stdin and NestedText output
is written to stdout.
"""

from docopt import docopt
from inform import done, fatal, full_stop, os_error, warn
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:
 indent = int(cmdline['--indent'])
except Exception:
 warn('expected positive integer for indent.', culprit=cmdline['--indent'])
 indent = 4
try:
 width = int(cmdline['--width'])
except Exception:
 warn('expected non-negative integer for width.', culprit=cmdline['--width'])
 width = 0

try:
 # read JSON content; from file or from stdin
 if input_filename:
 input_path = Path(input_filename)
 json_content = input_path.read_text(encoding='utf-8')
 else:
 json_content = sys.stdin.read()
 data = json.loads(json_content)

 # convert to NestedText
 nestedtext_content = nt.dumps(data, indent=indent, width=width) + "\n"

 # output NestedText content; to file or to stdout
 if input_filename:
 output_path = input_path.with_suffix('.nt')
 if output_path.exists():
 if not cmdline['--force']:
 fatal('file exists, use -f to force over-write.', culprit=output_path)
 output_path.write_text(nestedtext_content, encoding='utf-8')
 else:
 sys.stdout.write(nestedtext_content)

except OSError as e:
 fatal(os_error(e))
except nt.NestedTextError as e:
 e.terminate(culprit=input_filename)
except KeyboardInterrupt:
 done()
except json.JSONDecodeError as e:
 # create a nice error message with surrounding context
 msg = e.msg
 culprit = input_filename
 codicil = None
 try:
 lineno = e.lineno
 culprit = (culprit, lineno)
 colno = e.colno
 lines_before = e.doc.split('\n')[lineno-2:lineno]
 lines = []
 for i, l in zip(range(lineno-len(lines_before), lineno), lines_before):
 lines.append(f'{i+1:>4}> {l}')
 lines_before = '\n'.join(lines)
 lines_after = e.doc.split('\n')[lineno:lineno+1]
 lines = []
 for i, l in zip(range(lineno, lineno + len(lines_after)), lines_after):
 lines.append(f'{i+1:>4}> {l}')
 lines_after = '\n'.join(lines)
 codicil = f"{lines_before}\n {colno*' '}▲\n{lines_after}"
 except Exception:
 pass
 fatal(full_stop(msg), culprit=culprit, codicil=codicil)

The presence of this example should not be taken as a suggestion that
NestedText is a replacement for JSON. Be aware that not all JSON data can
be converted to NestedText, and in the conversion all type information is
lost.

NestedText to JSON

This example implements a command-line utility that converts a NestedText file
to JSON. It demonstrates the use of load() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a NestedText file and convert it to JSON.

usage:
 nestedtext-to-json [options] [<filename>]

options:
 -f, --force force overwrite of output file
 -d, --dedup de-duplicate keys in dictionaries

If <filename> is not given, NestedText input is taken from stdin and JSON output
is written to stdout.
"""

from docopt import docopt
from inform import done, fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

def de_dup(key, value, data, state):
 if key not in state:
 state[key] = 1
 state[key] += 1
 return f"{key}#{state[key]}"

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
on_dup = de_dup if cmdline['--dedup'] else None

try:
 if input_filename:
 input_path = Path(input_filename)
 data = nt.load(input_path, top='any', on_dup=de_dup)
 json_content = json.dumps(data, indent=4, ensure_ascii=False)
 output_path = input_path.with_suffix('.json')
 if output_path.exists():
 if not cmdline['--force']:
 fatal('file exists, use -f to force over-write.', culprit=output_path)
 output_path.write_text(json_content, encoding='utf-8')
 else:
 data = nt.load(sys.stdin, top='any', on_dup=de_dup)
 json_content = json.dumps(data, indent=4, ensure_ascii=False)
 sys.stdout.write(json_content + '\n')
except OSError as e:
 fatal(os_error(e))
except nt.NestedTextError as e:
 e.terminate()
except KeyboardInterrupt:
 done()

Display format

Besides being a readable file format, NestedText makes a reasonable display
format for structured data. You can further simplify the output by stripping
leading multiline string tags if you so desire.

>>> import nestedtext as nt
>>> import re
>>>
>>> def strip_nestedtext(text):
... return re.sub(r'^(\s*)[>:]\s?(.*)$', r'\1\2', text, flags=re.M)

>>> addresses = nt.load('examples/address.nt')
>>> print(strip_nestedtext(nt.dumps(addresses['treasurer'])))
name: Fumiko Purvis
address:
 3636 Buffalo Ave
 Topeka, Kansas 20692
phone: 1-268-555-0280
email: fumiko.purvis@hotmail.com
additional roles:
 - accounting task force

Cryptocurrency holdings

This example implements a command-line utility that displays the current value
of cryptocurrency holdings. The program starts by reading a settings file held
in ~/.config/cc that in this case holds:

holdings:
 - 5 BTC
 - 50 ETH
 - 50,000 XLM
currency: USD
date format: h:mm A, dddd MMMM D
screen width: 90

This file, of course, is in NestedText format. After being read by
load() it is processed by a voluptuous [https://github.com/alecthomas/voluptuous] schema that does some checking
on the form of the values specified and then converts the holdings to a list of
QuantiPhy [https://quantiphy.readthedocs.io] quantities. The latest prices
are then downloaded from cryptocompare [https://www.cryptocompare.com], the
value of the holdings are computed, and then displayed. The result looks like
this:

Holdings as of 11:18 AM, Wednesday September 2.
5 BTC = $56.8k @ $11.4k/BTC 68.4% ████████████████████████████████████▏
50 ETH = $21.7k @ $434/ETH 26.1% █████████████▊
50 kXLM = $4.6k @ $92m/XLM 5.5% ██▉
Total value = $83.1k.

And finally, the code:

#!/usr/bin/env python3

from appdirs import user_config_dir
import nestedtext as nt
from voluptuous import Schema, Required, All, Length, Invalid, Coerce
from inform import display, fatal, is_collection, os_error, render_bar, full_stop
import arrow
import requests
from quantiphy import Quantity
from pathlib import Path

configure preferences
Quantity.set_prefs(prec=2, ignore_sf = True)
currency_symbols = dict(USD='$', EUR='€', JPY='¥', GBP='£')

try:
 # read settings
 settings_file = Path(user_config_dir('cc'), 'settings')
 settings_schema = Schema({
 Required('holdings'): All([Coerce(Quantity)], Length(min=1)),
 'currency': str,
 'date format': str,
 'screen width': Coerce(int)
 })
 settings = settings_schema(nt.load(settings_file, top='dict'))
 currency = settings.get('currency', 'USD')
 currency_symbol = currency_symbols.get(currency, currency)
 screen_width = settings.get('screen width', 80)

 # download latest asset prices from cryptocompare.com
 params = dict(
 fsyms = ','.join(coin.units for coin in settings['holdings']),
 tsyms = currency,
)
 url = 'https://min-api.cryptocompare.com/data/pricemulti'
 try:
 r = requests.get(url, params=params)
 if r.status_code != requests.codes.ok:
 r.raise_for_status()
 except Exception as e:
 raise Error('cannot access cryptocurrency prices:', codicil=str(e))
 prices = {k: Quantity(v['USD'], currency_symbol) for k, v in r.json().items()}

 # compute total
 total = Quantity(0, currency_symbol)
 for coin in settings['holdings']:
 price = prices[coin.units]
 value = price.scale(coin)
 total = total.add(value)

 # display holdings
 now = arrow.now().format(settings.get('date format', 'h:mm A, dddd MMMM D, YYYY'))
 print(f'Holdings as of {now}.')
 bar_width = screen_width - 37
 for coin in settings['holdings']:
 price = prices[coin.units]
 value = price.scale(coin)
 portion = value/total
 summary = f'{coin} = {value} @ {price}/{coin.units}'
 print(f'{summary:<30} {portion:<5.1%} {render_bar(portion, bar_width)}')
 print(f'Total value = {total}.')

except nt.NestedTextError as e:
 e.terminate()
except Invalid as e:
 fatal(full_stop(e.msg), culprit=e.path)
except OSError as e:
 fatal(os_error(e))
except KeyboardInterrupt:
 pass

PostMortem

This example illustrates how one can implement references in NestedText.
A reference allows you to define some content once and insert that content
multiple places in the document. The example also demonstrates a slightly
different way to implement validation and conversion on a per field basis with
voluptuous [https://github.com/alecthomas/voluptuous].

PostMortem [https://github.com/kenkundert/postmortem] is a program that generates a packet of information that is securely
shared with your dependents in case of your death. Only the settings processing
part of the package is shown here. Here is a configuration file that Odin might
use to generate packets for his wife and kids:

my gpg ids: odin@norse-gods.com
sign with: @ my gpg ids
name template: {name}-{now:YYMMDD}
estate docs:
 - ~/home/estate/trust.pdf
 - ~/home/estate/will.pdf
 - ~/home/estate/deed-valhalla.pdf

recipients:
 frigg:
 email: frigg@norse-gods.com
 category: wife
 attach: @ estate docs
 networth: odin
 thor:
 email: thor@norse-gods.com
 category: kids
 attach: @ estate docs
 loki:
 email: loki@norse-gods.com
 category: kids
 attach: @ estate docs

Notice that estate docs is defined at the top level. It is not a PostMortem
setting; it simply defines a value that will be interpolated into a setting
later. The interpolation is done by specifying @ along with the name of the
reference as a value. So for example, in recipients attach is specified as
@ estate docs. This causes the list of estate documents to be used as
attachments. The same thing is done in sign with, which interpolates my gpg
ids.

Here is the code for validating and transforming the PostMortem settings:

#!/usr/bin/env python3
import nestedtext as nt
from pathlib import Path
from voluptuous import Schema, Invalid, Extra, Required, REMOVE_EXTRA
from pprint import pprint

Settings schema
First define some functions that are used for validation and coercion
def to_str(arg):
 if isinstance(arg, str):
 return arg
 raise Invalid('expected text.')

def to_ident(arg):
 arg = to_str(arg)
 if len(arg.split()) > 1:
 raise Invalid('expected simple identifier.')
 return arg

def to_list(arg):
 if isinstance(arg, str):
 return arg.split()
 if isinstance(arg, dict):
 raise Invalid('expected list.')
 return arg

def to_paths(arg):
 return [Path(p).expanduser() for p in to_list(arg)]

def to_email(arg):
 user, _, host = arg.partition('@')
 if '.' in host:
 return arg
 raise Invalid('expected email address.')

def to_emails(arg):
 return [to_email(e) for e in to_list(arg)]

def to_gpg_id(arg):
 try:
 return to_email(arg) # gpg ID may be an email address
 except Invalid:
 try:
 int(arg, base=16) # if not an email, it must be a hex key
 assert len(arg) >= 8 # at least 8 characters long
 return arg
 except (ValueError, AssertionError):
 raise Invalid('expected GPG id.')

def to_gpg_ids(arg):
 return [to_gpg_id(i) for i in to_list(arg)]

define the schema for the settings file
schema = Schema(
 {
 Required('my gpg ids'): to_gpg_ids,
 'sign with': to_gpg_id,
 'avendesora gpg passphrase account': to_str,
 'avendesora gpg passphrase field': to_str,
 'name template': to_str,
 Required('recipients'): {
 Extra: {
 Required('category'): to_ident,
 Required('email'): to_emails,
 'gpg id': to_gpg_id,
 'attach': to_paths,
 'networth': to_ident,
 }
 },
 },
 extra = REMOVE_EXTRA
)

this function implements references
def expand_settings(value):
 # allows macro values to be defined as a top-level setting.
 # allows macro reference to be found anywhere.
 if isinstance(value, str):
 value = value.strip()
 if value[:1] == '@':
 value = settings[value[1:].strip()]
 return value
 if isinstance(value, dict):
 return {k:expand_settings(v) for k, v in value.items()}
 if isinstance(value, list):
 return [expand_settings(v) for v in value]
 raise NotImplementedError(value)

try:
 # Read settings
 config_filepath = Path('postmortem.nt')
 if config_filepath.exists():

 # load from file
 settings = nt.load(config_filepath)

 # expand references
 settings = expand_settings(settings)

 # check settings and transform to desired types
 settings = schema(settings)

 # show the resulting settings
 pprint(settings)

except nt.NestedTextError as e:
 e.report()
except Invalid as e:
 print(f"ERROR: {'.'.join(str(p) for p in e.path)}: {e.msg}")

This code uses expand_settings to implement references, and it uses the
Voluptuous schema to clean and validate the settings and convert them to
convenient forms. For example, the user could specify attach as a string or
a list, and the members could use a leading ~ to signify a home directory.
Applying to_paths in the schema converts whatever is specified to a list and
converts each member to a pathlib [https://docs.python.org/3/library/pathlib.html] path with the ~ properly expanded.

Notice that the schema is defined in a different manner that the above examples.
In those, you simply state which type you are expecting for the value and you
use the Coerce function to indicate that the value should be cast to that type
if needed. In this example, simple functions are passed in that perform
validation and coercion as needed. This is a more flexible approach and allows
better control of the error messages.

Here are the processed settings:

{'my gpg ids': ['odin@norse-gods.com'],
'name template': '{name}-{now:YYMMDD}',
'recipients': {'frigg': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'wife',
 'email': ['frigg@norse-gods.com'],
 'networth': 'odin'},
 'loki': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'kids',
 'email': ['loki@norse-gods.com']},
 'thor': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'kids',
 'email': ['thor@norse-gods.com']}},
'sign with': 'odin@norse-gods.com'}

Common mistakes

When load() or loads() complains of errors it is important to
look both at the line fingered by the error message and the one above it. The
line that is the target of the error message might by an otherwise valid
NestedText line if it were not for the line above it. For example, consider
the following example:

Example:

>>> import nestedtext as nt

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address: Home
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content)
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation. An indent may only follow a dictionary or list
item that does not already have a value.
 4 « address: Home»
 5 « > 3636 Buffalo Ave»
 ▲

Notice that the complaint is about line 5, but problem stems from line 4 where
Home gave a value to address. With a value specified for address, any
further indentation on line 5 indicates a second value is being specified for
address, which is illegal.

A more subtle version of this same error follows:

Example:

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address:␣␣
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content.replace('␣␣', ' '))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation. An indent may only follow a dictionary or list
item that does not already have a value, which in this case consists
only of whitespace.
 4 « address: »
 5 « > 3636 Buffalo Ave»
 ▲

Notice the ␣␣ that follows address in content. These are replaced by
2 spaces before content is processed by loads. Thus, in this case there is
an extra space at the end of line 4. Anything beyond the: :␣ is considered
the value for address, and in this case that is the single extra space
specified at the end of the line. This extra space is taken to be the value of
address, making the multiline string in lines 5 and 6 a value too many.

Python API

	nestedtext.dumps(obj, *[, width, sort_keys, …])

	Recursively convert object to NestedText string.

	nestedtext.dump(obj, f, **kwargs)

	Write the NestedText representation of the given object to the given file.

	nestedtext.loads(content[, top, source, on_dup])

	Loads NestedText from string.

	nestedtext.load([f, top, on_dup])

	Loads NestedText from file or stream.

	nestedtext.NestedTextError(*args, **kwargs)

	The load and dump functions all raise NestedTextError when they discover an error.

nestedtext.dumps

	
nestedtext.dumps(obj, *, width=0, sort_keys=False, indent=4, converters=None, default=None, _level=0)

	Recursively convert object to NestedText string.

	Parameters

	
	obj – The object to convert to NestedText.

	width (int) – Enables compact lists and dictionaries if greater than zero and if
resulting line would be less than or equal to given width.

	sort_keys (bool or func) – Dictionary items are sorted by their key if sort_keys is true.
If a function is passed in, it is used as the key function.

	indent (int) – The number of spaces to use to represent a single level of
indentation. Must be one or greater.

	converters (dict) – A dictionary where the keys are types and the values are converter
functions (functions that take an object and return it in a form
that can be processed by NestedText). If a value is False, an
unsupported type error is raised.

An object may provide its own converter by defining the
__nestedtext_converter__ attribute. It may be False, or it may
be a method that converts the object to a supported data type for
NestedText. A matching converter specified in the converters
argument dominates over this attribute.

	default (func or 'strict') – The default converter. Use to convert otherwise unrecognized objects
to a form that can be processed. If not provided an error will be
raised for unsupported data types. Typical values are repr or
str. If ‘strict’ is specified then only dictionaries, lists,
strings, and those types that have converters are allowed. If
default is not specified then a broader collection of value types
are supported, including None, bool, int, float, and list-
and dict-like objects. In this case Booleans are rendered as
‘True’ and ‘False’ and None is rendered as an empty string. If
default is a function, it acts as the default converter. If
it raises a TypeError, the value is reported as an
unsupported type.

	_level (int) – The number of indentation levels. When dumps is invoked recursively
this is used to increment the level and so the indent. Should not
be specified by the user.

	Returns

	The NestedText content.

	Raises

	NestedTextError – if there is a problem in the input data.

Examples

>>> import nestedtext as nt

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
name: Kristel Templeton
sex: female
age: 74

The NestedText format only supports dictionaries, lists, and strings.
By default, dumps is configured to be rather forgiving, so it will
render many of the base Python data types, such as None, bool,
int, float and list-like types such as tuple and set by
converting them to the types supported by the format. This implies that
a round trip through dumps and loads could result in the types of
values being transformed. You can restrict dumps to only supporting
the native types of NestedText by passing default=’strict’ to
dumps. Doing so means that values that are not dictionaries, lists,
or strings generate exceptions.

>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
key: 42
value: 3.1415926
valid: True

>>> try:
... print(nt.dumps(data, default='strict'))
... except nt.NestedTextError as e:
... print(str(e))
42: unsupported type.

Alternatively, you can specify a function to default, which is used
to convert values to strings. It is used if no other converter is
available. Typical values are str and repr.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __repr__(self):
... return f'Color({self.color!r})'
... def __str__(self):
... return self.color

>>> data['house'] = Color('red')
>>> print(nt.dumps(data, default=repr))
key: 42
value: 3.1415926
valid: True
house: Color('red')

>>> print(nt.dumps(data, default=str))
key: 42
value: 3.1415926
valid: True
house: red

If Color is consistently used with NestedText, you can include the
converter in Color itself.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __nestedtext_converter__(self):
... return self.color.title()

>>> data['house'] = Color('red')
>>> print(nt.dumps(data))
key: 42
value: 3.1415926
valid: True
house: Red

You can also specify a dictionary of converters. The dictionary maps the
object type to a converter function.

>>> class Info:
... def __init__(self, **kwargs):
... self.__dict__ = kwargs

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: lambda f: f'{f:0.3}',
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> data['attributes'] = Info(readable=True, writable=False)

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
key: 0x2a
value: 3.14
valid: yes
house: red
attributes:
 readable: yes
 writable: no

The above example shows that Color in the converters argument
dominates over the __nestedtest__converter__ class.

If the dictionary maps a type to None, then the default behavior is
used for that type. If it maps to False, then an exception is raised.

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: False,
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
3.1415926: unsupported type.

Both default and converters may be used together. converters has
priority over the built-in types and default. When a function is
specified as default, it is always applied as a last resort.

nestedtext.dump

	
nestedtext.dump(obj, f, **kwargs)

	Write the NestedText representation of the given object to the given file.

	Parameters

	
	obj – The object to convert to NestedText.

	f (str, os.PathLike, io.TextIOBase) – The file to write the NestedText content to. The file can be
specified either as a path (e.g. a string or a pathlib.Path) or
as a text IO instance (e.g. an open file). If a path is given, the
will be opened, written, and closed. If an IO object is given, it
must have been opened in a mode that allows writing (e.g.
open(path, 'w')), if applicable. It will be written and not
closed.

The name used for the file is arbitrary but it is tradition to use a
.nt suffix. If you also wish to further distinguish the file type
by giving the schema, it is recommended that you use two suffixes,
with the suffix that specifies the schema given first and .nt given
last. For example: flicker.sig.nt.

	kwargs – See dumps() for optional arguments.

	Returns

	The NestedText content.

	Raises

	
	NestedTextError – if there is a problem in the input data.

	OSError – if there is a problem opening the file.

Examples

This example writes to a pointer to an open file.

>>> import nestedtext as nt
>>> from inform import fatal, os_error

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... with open('data.nt', 'w', encoding='utf-8') as f:
... nt.dump(data, f)
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

This example writes to a file specified by file name. In general, the
file name and extension are arbitrary. However, by convention a
‘.nt’ suffix is generally used for NestedText files.

>>> try:
... nt.dump(data, 'data.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

nestedtext.loads

	
nestedtext.loads(content, top='dict', *, source=None, on_dup=None)

	Loads NestedText from string.

	Parameters

	
	content (str) – String that contains encoded data.

	top (str) – Top-level data type. The NestedText format allows for a dictionary,
a list, or a string as the top-level data container. By specifying
top as ‘dict’, ‘list’, or ‘str’ you constrain both the type of
top-level container and the return value of this function. By
specifying ‘any’ you enable support for all three data types, with
the type of the returned value matching that of top-level container
in content. As a short-hand, you may specify the dict, list,
str, and any built-ins rather than specifying top with a
string.

	source (str or Path) – If given, this string is attached to any error messages as the
culprit. It is otherwise unused. Is often the name of the file that
originally contained the NestedText content.

	on_dup (str or func) – Indicates how duplicate keys in dictionaries should be handled. By
default they raise exceptions. Specifying ‘ignore’ causes them to be
ignored (first wins). Specifying ‘replace’ results in them replacing
earlier items (last wins). By specifying a function, the keys can be
de-duplicated. This call-back function returns a new key and takes
four arguments:

	The new key (duplicates an existing key).

	The new value.

	The entire dictionary as it is at the moment the duplicate key is
found.

	The state; a dictionary that is created as the loads is called
and deleted as it returns. Values placed in this dictionary are
retained between multiple calls to this call back function.

	Returns

	The extracted data. The type of the return value is specified by the
top argument. If top is ‘any’, then the return value will match that of
top-level data container in the input content. If content is empty, an
empty data value is return of the type specified by top. If top is
‘any’ None is returned.

	Raises

	NestedTextError – if there is a problem in the NextedText content.

Examples

NestedText is specified to loads in the form of a string:

>>> import nestedtext as nt

>>> contents = """
... name: Kristel Templeton
... sex: female
... age: 74
... """

>>> try:
... data = nt.loads(contents, 'dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'name': 'Kristel Templeton', 'sex': 'female', 'age': '74'}

loads() takes an optional argument, source. If specified, it is
added to any error messages. It is often used to designate the source
of contents. For example, if contents were read from a file,
source would be the file name. Here is a typical example of reading
NestedText from a file:

>>> filename = 'examples/duplicate-keys.nt'
>>> try:
... with open(filename, encoding='utf-8') as f:
... addresses = nt.loads(f.read(), source=filename)
... except nt.NestedTextError as e:
... print(e.render())
... print(*e.get_codicil(), sep="\n")
examples/duplicate-keys.nt, 5: duplicate key: name.
 4 «name:»
 5 «name:»
 ▲

Notice in the above example the encoding is explicitly specified as
‘utf-8’. NestedText files should always be read and written using
utf-8 encoding.

The following examples demonstrate the various ways of handling
duplicate keys:

>>> content = """
... key: value 1
... key: value 2
... key: value 3
... name: value 4
... name: value 5
... """

>>> print(nt.loads(content))
Traceback (most recent call last):
...
nestedtext.NestedTextError: 3: duplicate key: key.

>>> print(nt.loads(content, on_dup='ignore'))
{'key': 'value 1', 'name': 'value 4'}

>>> print(nt.loads(content, on_dup='replace'))
{'key': 'value 3', 'name': 'value 5'}

>>> def de_dup(key, value, data, state):
... if key not in state:
... state[key] = 1
... state[key] += 1
... return f"{key}#{state[key]}"

>>> print(nt.loads(content, on_dup=de_dup))
{'key': 'value 1', 'key#2': 'value 2', 'key#3': 'value 3', 'name': 'value 4', 'name#2': 'value 5'}

nestedtext.load

	
nestedtext.load(f=None, top='dict', *, on_dup=None)

	Loads NestedText from file or stream.

Is the same as loads() except the NextedText is accessed by reading
a file rather than directly from a string. It does not keep the full
contents of the file in memory and so is more memory efficient with large
files.

	Parameters

	
	f (str, os.PathLike, io.TextIOBase, collections.abc.Iterator) – The file to read the NestedText content from. This can be
specified either as a path (e.g. a string or a pathlib.Path),
as a text IO object (e.g. an open file), or as an iterator. If a
path is given, the file will be opened, read, and closed. If an IO
object is given, it will be read and not closed; utf-8 encoding
should be used.. If an iterator is given, it should generate full
lines in the same manner that iterating on a file descriptor would.

	kwargs – See loads() for optional arguments.

	Returns

	The extracted data.
See loads() description of the return value.

	Raises

	
	NestedTextError – if there is a problem in the NextedText content.

	OSError – if there is a problem opening the file.

Examples

Load from a path specified as a string:

>>> import nestedtext as nt
>>> print(open('examples/groceries.nt').read())
groceries:
 - Bread
 - Peanut butter
 - Jam

>>> nt.load('examples/groceries.nt')
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from a pathlib.Path:

>>> from pathlib import Path
>>> nt.load(Path('examples/groceries.nt'))
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from an open file object:

>>> with open('examples/groceries.nt') as f:
... nt.load(f)
...
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

nestedtext.NestedTextError

	
exception nestedtext.NestedTextError(*args, **kwargs)

	The load and dump functions all raise NestedTextError when they
discover an error. NestedTextError subclasses both the Python ValueError
and the Error exception from Inform. You can find more documentation on
what you can do with this exception in the Inform documentation [https://inform.readthedocs.io/en/stable/api.html#exceptions].

The exception provides the following attributes:

source:

The source of the NestedText content, if given. This is often a
filename.

line:

The text of the line of NestedText content where the problem was found.

lineno:

The number of the line where the problem was found.

colno:

The number of the character where the problem was found on line.

prev_line:

The text of the meaningful line immediately before where the problem was
found. This would not be a comment or blank line.

template:

The possibly parameterized text used for the error message.

As with most exceptions, you can simply cast it to a string to get a
reasonable error message.

>>> from textwrap import dedent
>>> import nestedtext as nt

>>> content = dedent("""
... name1: value1
... name1: value2
... name3: value3
... """).strip()

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(str(e))
2: duplicate key: name1.

You can also use the report method to print the message directly. This is
appropriate if you are using inform for your messaging as it follows
inform’s conventions:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.report()
error: 2: duplicate key: name1.
 «name1: value2»
 ▲

The terminate method prints the message directly and exits:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.terminate()
error: 2: duplicate key: name1.
 «name1: value2»
 ▲

With exceptions generated from load() or loads() you may see
extra lines at the end of the message that show the problematic lines if
you have the exception report itself as above. Those extra lines are
referred to as the codicil and they can be very helpful in illustrating the
actual problem. You do not get them if you simply cast the exception to a
string, but you can access them using NestedTextError.get_codicil().
The codicil or codicils are returned as a tuple. You should join them with
newlines before printing them.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(*e.get_codicil(), sep="\n")
duplicate key: name1.
 1 «name1: value1»
 2 «name1: value2»
 ▲

Note the « and » characters in the codicil. They delimit the extend of the
text on each line and help you see troublesome leading or trailing white
space.

Exceptions produced by NestedText contain a template attribute that
contains the basic text of the message. You can change this message by
overriding the attribute using the template argument when using report,
terminate, or render. render is like casting the exception to a
string except that allows for the passing of arguments. For example, to
convert a particular message to Spanish, you could use something like the
following.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... template = None
... if e.template == 'duplicate key: {}.':
... template = 'llave duplicada: {}.'
... print(e.render(template=template))
2: llave duplicada: name1.

Releases

Latest development version

Version: 2.0.0

Released: 2021-05-28

v2.0 (2021-05-28)

	Deprecate quoted keys.

	Add multiline keys to replace quoted keys.

	Add inline lists and dictionaries.

	Move from renderers to converters in dump() and dumps().
Both allow you to support arbitrary data types. With renderers you
provide functions that are responsible for directly creating the text to
be inserted in the NestedText output. This can be complicated and error
prone. With converters you instead convert the object to a known
NestedText data type (dict, list, string, …) and the dump function
automatically formats it appropriately.

	Restructure documentation.

Warning

Be aware that aspects of this version are not backward compatible.

	It no longer supports quoted dictionary keys.

	The renderers argument to dump() and dumps() has been replaced by converters.

	It no longer allows one to specify level in dump() and dumps().

v1.3 (2021-01-02)

	Move the test cases to a submodule.

Note

When cloning the NestedText repository you should use the –recursive
flag to get the official_tests submodule:

git clone --recursive https://github.com/KenKundert/nestedtext.git

When updating an existing repository, you need to initialize the
submodule after doing a pull:

git submodule update --init --remote tests/official_tests

This only need be done once.

v1.2 (2020-10-31)

	Treat CR LF, CR, or LF as a line break.

	Always quote keys that start with a quote.

v1.1 (2020-10-13)

	Add ability to specify return type of load() and loads().

	Quoted keys are now less restricted.

	Empty dictionaries and lists are rejected by dump() and
dumps() except as top-level object if default argument is
specified as ‘strict’.

Warning

Be aware that this version is not fully backward compatible. Unlike
previous versions, this version allows you to restrict the type of the
return value of the load() and loads() functions, and the
default is ‘dict’. The previous behavior is still supported, but you
must explicitly specify top=’any’ as an argument.

This change results in a simpler return value from load() and
loads() in most cases. This substantially reduces the chance of
coding errors. It was noticed that it was common to simply assume that
the top-level was a dictionary when writing code that used these
functions, which could result in unexpected errors when users
hand-create the input data. Specifying the return value eliminates this
type of error.

There is another small change that is not backward compatible. The
source argument to these functions is now a keyword only argument.

v1.0 (2020-10-03)

	Production release.

v0.6 (2020-09-26)

	Added load() and dump().

	Eliminated NestedTextError.get_extended_codicil.

v0.5 (2020-09-11)

	allow user to manage duplicate keys detected by loads().

v0.4 (2020-09-07)

	Change rest-of-line strings to include all characters given, including
leading and trailing quotes and spaces.

	The NestedText top-level is no longer restricted to only dictionaries
and lists. The top-level can now also be a single string.

	loads() now returns None when given an empty NestedText document.

	Change NestedTextError attribute names to make them more consistent
with those used by JSON package.

	Added NestedTextError.get_extended_codicil.

v0.3 (2020-09-03)

	Allow comments to be indented.

v0.2 (2020-09-02)

	Minor enhancements and bug fixes.

v0.1 (2020-08-30)

	Initial release.

Index

 D
 | L
 | N

D

 	
 	dump() (in module nestedtext)

 	
 	dumps() (in module nestedtext)

L

 	
 	load() (in module nestedtext)

 	
 	loads() (in module nestedtext)

N

 	
 	NestedTextError

Installation

pip3 install --user nestedtext

Releases

Latest development release

Version: 1.3.0

Released: 2021-01-02

v1.3 (2021-01-02)

	Move the test cases to a submodule.

Note

When cloning the NestedText repository you should use the –recursive
flag to get the official_tests submodule:

git clone --recursive https://github.com/KenKundert/nestedtext.git

When updating an existing repository, you need to initialize the
submodule after doing a pull:

git submodule update --init --remote tests/official_tests

This only need be done once.

v1.2 (2020-10-31)

	Treat CR LF, CR, or LF as a line break.

	Always quote keys that start with a quote.

v1.1 (2020-10-13)

	Add ability to specify return type of load() and loads().

	Quoted keys are now less restricted.

	Empty dictionaries and lists are rejected by dump() and
dumps() except as top-level object if default argument is
specified as ‘strict’.

Warning

Be aware that this version is not fully backward compatible. Unlike
previous versions, this version allows you to restrict the type of the
return value of the load() and loads() functions, and the
default is ‘dict’. The previous behavior is still supported, but you
must explicitly specify top=’any’ as an argument.

This change results in a simpler return value from load() and
loads() in most cases. This substantially reduces the chance of
coding errors. It was noticed that it was common to simply assume that
the top-level was a dictionary when writing code that used these
functions, which could result in unexpected errors when users
hand-create the input data. Specifying the return value eliminates this
type of error.

There is another small change that is not backward compatible. The
source argument to these functions is now a keyword only argument.

v1.0 (2020-10-03)

	Production release.

v0.6 (2020-09-26)

	Added load() and dump().

	Eliminated NestedTextError.get_extended_codicil.

v0.5 (2020-09-11)

	allow user to manage duplicate keys detected by loads().

v0.4 (2020-09-07)

	Change rest-of-line strings to include all characters given, including
leading and trailing quotes and spaces.

	The NestedText top-level is no longer restricted to only dictionaries
and lists. The top-level can now also be a single string.

	loads() now returns None when given an empty NestedText document.

	Change NestedTextError attribute names to make them more consistent
with those used by JSON package.

	Added NestedTextError.get_extended_codicil.

v0.3 (2020-09-03)

	Allow comments to be indented.

v0.2 (2020-09-02)

	Minor enhancements and bug fixes.

v0.1 (2020-08-30)

	Initial release.

 nav.xhtml

 Table of Contents

 		
 NestedText: A Human Friendly Data Format

 		
 Philosophy

 		
 Alternatives

 		
 JSON

 		
 YAML

 		
 TOML

 		
 Language introduction

 		
 Dictionaries

 		
 Lists

 		
 Strings

 		
 Comments

 		
 Nesting

 		
 NestedText Files

 		
 Language reference

 		
 Language changes

 		
 Latest development version

 		
 v2.0 (2021-05-28)

 		
 v1.3 (2021-01-02)

 		
 v1.2 (2020-10-31)

 		
 v1.1 (2020-10-13)

 		
 v1.0 (2020-10-03)

 		
 Basic use

 		
 Installation

 		
 NestedText Reader

 		
 NestedText Writer

 		
 Schemas

 		
 Examples

 		
 Validate with Pydantic

 		
 Validate with Voluptuous

 		
 JSON to NestedText

 		
 NestedText to JSON

 		
 Display format

 		
 Cryptocurrency holdings

 		
 PostMortem

 		
 Common mistakes

 		
 Python API

 		
 nestedtext.dumps

 		
 nestedtext.dump

 		
 nestedtext.loads

 		
 nestedtext.load

 		
 nestedtext.NestedTextError

 		
 Releases

 		
 Latest development version

 		
 v2.0 (2021-05-28)

 		
 v1.3 (2021-01-02)

 		
 v1.2 (2020-10-31)

 		
 v1.1 (2020-10-13)

 		
 v1.0 (2020-10-03)

 		
 v0.6 (2020-09-26)

 		
 v0.5 (2020-09-11)

 		
 v0.4 (2020-09-07)

 		
 v0.3 (2020-09-03)

 		
 v0.2 (2020-09-02)

 		
 v0.1 (2020-08-30)

_static/plus.png

_static/file.png

_static/minus.png

