
NestedText
Release 3.3.0

unknown

Jun 08, 2022

LANGUAGE

1 Contributing 3

Index 63

i

ii

NestedText, Release 3.3.0

Authors: Ken & Kale Kundert
Version: 3.3.0
Released: 2022-06-07
Documentation: nestedtext.org.
Please post all questions, suggestions, and bug reports to: Github.

NestedText is a file format for holding structured data to be entered, edited, or viewed by people. It organizes the data
into a nested collection of dictionaries, lists, and strings without the need for quoting or escaping. A unique feature of
this file format is that it only supports one scalar type: strings. While the decision to eschew integer, real, date, etc.
types may seem counter intuitive, it leads to simpler data files and applications that are more robust.

NestedText is convenient for configuration files, address books, account information, and the like. Because there is
no need for quoting or escaping, it is particularly nice for holding code fragments. Here is an example of a file that
contains a few addresses:

Contact information for our officers

Katheryn McDaniel:
position: president
address:

> 138 Almond Street
> Topeka, Kansas 20697

phone:
cell: 1-210-555-5297
home: 1-210-555-8470

Katheryn prefers that we always call her on her cell phone.
email: KateMcD@aol.com
additional roles:

- board member

Margaret Hodge:
position: vice president
address:

> 2586 Marigold Lane
> Topeka, Kansas 20682

phone: 1-470-555-0398
email: margaret.hodge@ku.edu
additional roles:

- new membership task force
- accounting task force

LANGUAGE 1

https://pepy.tech/project/nestedtext
https://nestedtext.readthedocs.io/en/latest/?badge=latest
https://github.com/KenKundert/nestedtext/actions/workflows/build.yaml
https://coveralls.io/github/KenKundert/nestedtext?branch=master
https://pypi.python.org/pypi/nestedtext
https://pypi.python.org/pypi/nestedtext
https://nestedtext.org
https://github.com/KenKundert/nestedtext/issues

NestedText, Release 3.3.0

2 LANGUAGE

CHAPTER

ONE

CONTRIBUTING

This package contains a Python reference implementation of NestedText and a test suite. Implementation in many
languages is required for NestedText to catch on widely. If you like the format, please consider contributing additional
implementations.

Also, please consider using NestedText for any applications you create. It is especially suitable for configuration files.

1.1 The Zen of NestedText

NestedText aspires to be a simple dumb receptacle that holds peoples’ structured data and does so in a way that allows
people to easily interact with that data.

The desire to be simple is an attempt to minimize the effort required to learn and use the language. Ideally, people can
understand it by looking at a few examples. And ideally, they can use it without needing to remember any arcane rules
or relying on any knowledge that programmers accumulate through years of experience. One source of simplicity is
consistency. As such, NestedText uses a small number of rules that it applies with few exceptions.

The desire to be dumb means that NestedText tries not to transform the data in any meaningful way to avoid creating
unpleasant surprises. It parses the structure of the data without doing anything that might change how the data is
interpreted. Instead, it aims to make it easy for you to interpret the data yourself. After all, you understand what the
data is supposed to mean, so you are in the best position to interpret it. There are also many powerful tools available
to help with this exact task.

1.2 Alternatives

There are no shortage of well established alternatives to NestedText for storing data in a human-readable text file.
The features and shortcomings of some of these alternatives are discussed next. NestedText is intended to be used in
situations where people either create, modify, or consume the data directly. It is this perspective that informs these
comparisons.

3

NestedText, Release 3.3.0

1.2.1 JSON

JSON is a subset of JavaScript suitable for holding data. Like NestedText, it consists of a hierarchical collection of
objects (dictionaries), lists, and strings, but also allows numbers, Booleans and nulls. In practice, JSON is largely
generated and consumed by machines. The data is stored as text, and so can be read, modified, and consumed directly
by the end user, but the format is not optimized for this use case and so is often cumbersome or inefficient when used
in this manner.

JSON supports all the native data types common to most languages. Syntax is added to values to unambiguously
indicate their type. For example, 2, 2.0, and "2" are three different values with three different types (integer, real,
string). This adds two types of complexity. First, the rules for distinguishing various types must be learned and used.
Second, all strings must be quoted, and with quoting comes escaping, which is needed to allow quote characters to be
included in strings.

JSON was derived as a subset of JavaScript, and so inherits a fair amount of syntactic clutter that can be annoying for
users to enter and maintain. In addition, features that would improve clarity are lacking. Comments are not allowed,
multiline strings are not supported, and whitespace is insignificant (leading to the possibility that the appearance of the
data may not match its true structure).

NestedText only supports three data types (strings, lists and dictionaries) and does not have the baggage of being the
subset of a general purpose programming language. The result is a simpler language that has the following clear
advantages over JSON as a human readable and writable data file format:

• strings do not require quotes

• comments

• multiline strings

• no need to escape special characters

• commas are not used to separate dictionary and list items

The following examples illustrate the difference between JSON and NestedText:

{
"treasurer": {

"name": "Fumiko Purvis",
"address": "3636 Buffalo Ave\nTopeka, Kansas 20692",
"phone": "1-268-555-0280",
"email": "fumiko.purvis@hotmail.com",
"additional roles": [

"accounting task force"
]

}
}

treasurer:
name: Fumiko Purvis

Fumiko's term is ending at the end of the year.
She will be replaced by Merrill Eldridge.

address:
> 3636 Buffalo Ave
> Topeka, Kansas 20692

phone: 1-268-555-0280
email: fumiko.purvis@hotmail.com
additional roles:

- accounting task force

4 Chapter 1. Contributing

https://www.json.org/json-en.html

NestedText, Release 3.3.0

1.2.2 YAML

YAML is considered by many to be a human friendly alternative to JSON. There is less syntactic clutter and the quoting
of strings is optional. However, it also supports a wide variety of data types and formats. The optional quoting can
result in the type of values being ambiguous. To distinguish between the various types, a complicated and non-intuitive
set of rules developed. YAML at first appears very appealing when used with simple examples, but things can quickly
become complicated or provide unexpected results. A reaction to this is the use of YAML subsets, such as StrictYAML.
However, the subsets still try to maintain compatibility with YAML and so inherit much of its complexity. For example,
both YAML and StrictYAML support nine different ways of writing multiline strings.

YAML avoids excessive quoting and supports comments and multiline strings, but the multitude of formats and disam-
biguation rules make YAML a difficult language to learn, and the ambiguities creates traps for the user. To illustrate
these points, the following is a condensation of a YAML document taken from the GitHub documentation that describes
how to configure continuous integration using Python:

name: Python package
on: [push]
build:
python-version: [3.6, 3.7, 3.8, 3.9, 3.10]
steps:
- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install pytest
if [-f 'requirements.txt']; then pip install -r requirements.txt; fi

- name: Test with pytest
run: |

pytest

And here is the result of running that document through the Python YAML reader and writer.

name: Python package
true:
- push
build:
python-version:
- 3.6
- 3.7
- 3.8
- 3.9
- 3.1
steps:
- name: Install dependencies
run: 'python -m pip install --upgrade pip

pip install pytest

(continues on next page)

1.2. Alternatives 5

https://yaml.org/
\T1\textless {}https://hitchdev.com/strictyaml
http://stackoverflow.com/a/21699210/660921

NestedText, Release 3.3.0

(continued from previous page)

if [-f ''requirements.txt'']; then pip install -r requirements.txt; fi

'
- name: Test with pytest
run: 'pytest

'

There are a few things to notice about this second version.

1. on key was inappropriately converted to true.

2. Python version 3.10 was inappropriately converted to 3.1.

3. The multiline string was converted to a different representation that added blank lines between each line, greatly
confusing the presentation of the string.

4. Escaping was required for the quotes on 'requirements.txt'.

5. Indentation is not an accurate reflection of nesting (notice that python-version and - 3.6 have the same
indentation, but - 3.6 is contained inside python-version).

One might expect that the format might change a bit while the underlying information remains constant. But that is not
the case. The ambiguities in the format result in both on and 3.10 being changed in value and meaning.

Now consider the NestedText version; it is simpler and not subject to misinterpretation.

name: Python package
on:

- push
build:

python-version:
- 3.6
- 3.7
- 3.8
- 3.9
- 3.10

steps:
-

name: Install dependencies
run:

> python -m pip install --upgrade pip
> pip install pytest
> if [-f 'requirements.txt']; then pip install -r requirements.txt; fi

-
name: Test with pytest
run: pytest

NestedText was inspired by YAML, but eschews its complexity. It has the following clear advantages over YAML as a
human readable and writable data file format:

6 Chapter 1. Contributing

NestedText, Release 3.3.0

• simple

• unambiguous (no implicit typing)

• no unexpected conversions of the data

• syntax is insensitive to special characters within text

• safe, no risk of malicious code execution

• round-tripping from NestedText does not result in changed values or ugly and confusing presentations

1.2.3 TOML or INI

TOML is a configuration file format inspired by the well-known INI syntax. It supports a number of basic data types
(notably including dates and times) using syntax that is more similar to JSON (explicit but verbose) than to YAML
(succinct but confusing). As discussed previously, though, this makes it the responsibility of the user to specify the
correct type for each field.

Another flaw in TOML is that it is difficult to specify deeply nested structures. The only way to specify a nested
dictionary is to give the full key to that dictionary, relative to the root of the entire hierarchy. This is not much a
problem if the hierarchy only has 1-2 levels, but any more than that and you find yourself typing the same long keys
over and over. A corollary to this is that TOML-based configurations do not scale well: increases in complexity are
often accompanied by disproportionate decreases in readability and writability.

Here is an example of a configuration file in TOML and NestedText:

[plugins]
auth = ['avendesora']
archive = ['ssh', 'gpg', 'avendesora', 'emborg', 'file']
publish = ['scp', 'mount']

[auth.avendesora]
account = 'login'
field = 'passcode'

[archive.file]
src = ['~/src/nfo/contacts']
[archive.avendesora]
[archive.emborg]
config = 'rsync'

[publish.scp]
host = ['backups']
remote_dir = 'archives/{date:YYMMDD}'

[publish.mount]
drive = '/mnt/secrets'
remote_dir = 'sparekeys/{date:YYMMDD}'

plugins:
auth:

- avendesora
archive:

- ssh
- gpg

(continues on next page)

1.2. Alternatives 7

https://toml.io/en/
https://en.wikipedia.org/wiki/INI_file

NestedText, Release 3.3.0

(continued from previous page)

- avendesora
- emborg
- file

publish:
- scp
- mount

auth:
avendesora:

account: login
field: passcode

archive:
file:

src:
- ~/src/nfo/contacts

avendesora:
{}

emborg:
config: rsync

publish:
scp:

host:
- backups

remote_dir: archives/{date:YYMMDD}
mount:

drive: /mnt/secrets
remote_dir: sparekeys/{date:YYMMDD}

NestedText has the following clear advantages over TOML and INI as a human readable and writable data file format:

• text does not require quoting or escaping

• data is left in its original form

• indentation used to succinctly represent nested data

• the structure of the file matches the structure of the data

• heavily nested data is represented efficiently

1.2.4 CSV or TSV

CSV (comma-separated values) and the closely related TSV (tab-separated values) are exchange formats for tabular
data. Tabular data consists of multiple records where each record is made up of a consistent set of fields. The format
separates the records using line breaks and separates the fields using commas or tabs. Quoting and escaping is required
when the fields contain line breaks or commas/tabs.

Here is an example data file in CSV and NestedText.

8 Chapter 1. Contributing

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values

NestedText, Release 3.3.0

Year,Agriculture,Architecture,Art and Performance,Biology,Business,Communications and␣
→˓Journalism,Computer Science,Education,Engineering,English,Foreign Languages,Health␣
→˓Professions,Math and Statistics,Physical Sciences,Psychology,Public Administration,
→˓Social Sciences and History
1970,4.22979798,11.92100539,59.7,29.08836297,9.064438975,35.3,13.6,74.53532758,0.8,65.
→˓57092343,73.8,77.1,38,13.8,44.4,68.4,36.8
1980,30.75938956,28.08038075,63.4,43.99925716,36.76572529,54.7,32.5,74.98103152,10.3,65.
→˓28413007,74.1,83.5,42.8,24.6,65.1,74.6,44.2
1990,32.70344407,40.82404662,62.6,50.81809432,47.20085084,60.8,29.4,78.86685859,14.1,66.
→˓92190193,71.2,83.9,47.3,31.6,72.6,77.6,45.1
2000,45.05776637,40.02358491,59.2,59.38985737,49.80361649,61.9,27.7,76.69214284,18.4,68.
→˓36599498,70.9,83.5,48.2,41,77.5,81.1,51.8
2010,48.73004227,42.06672091,61.3,59.01025521,48.75798769,62.5,17.6,79.61862451,17.2,67.
→˓92810557,69,85,43.1,40.2,77,81.7,49.3

-
Year: 1970
Agriculture: 4.22979798
Architecture: 11.92100539
Art and Performance: 59.7
Biology: 29.08836297
Business: 9.064438975
Communications and Journalism: 35.3
Computer Science: 13.6
Education: 74.53532758
Engineering: 0.8
English: 65.57092343
Foreign Languages: 73.8
Health Professions: 77.1
Math and Statistics: 38
Physical Sciences: 13.8
Psychology: 44.4
Public Administration: 68.4
Social Sciences and History: 36.8

-
Year: 1980
Agriculture: 30.75938956
Architecture: 28.08038075
Art and Performance: 63.4
Biology: 43.99925716
Business: 36.76572529
Communications and Journalism: 54.7
Computer Science: 32.5
Education: 74.98103152
Engineering: 10.3
English: 65.28413007
Foreign Languages: 74.1
Health Professions: 83.5
Math and Statistics: 42.8
Physical Sciences: 24.6
Psychology: 65.1
Public Administration: 74.6

(continues on next page)

1.2. Alternatives 9

NestedText, Release 3.3.0

(continued from previous page)

Social Sciences and History: 44.2
-

Year: 1990
Agriculture: 32.70344407
Architecture: 40.82404662
Art and Performance: 62.6
Biology: 50.81809432
Business: 47.20085084
Communications and Journalism: 60.8
Computer Science: 29.4
Education: 78.86685859
Engineering: 14.1
English: 66.92190193
Foreign Languages: 71.2
Health Professions: 83.9
Math and Statistics: 47.3
Physical Sciences: 31.6
Psychology: 72.6
Public Administration: 77.6
Social Sciences and History: 45.1

-
Year: 2000
Agriculture: 45.05776637
Architecture: 40.02358491
Art and Performance: 59.2
Biology: 59.38985737
Business: 49.80361649
Communications and Journalism: 61.9
Computer Science: 27.7
Education: 76.69214284
Engineering: 18.4
English: 68.36599498
Foreign Languages: 70.9
Health Professions: 83.5
Math and Statistics: 48.2
Physical Sciences: 41
Psychology: 77.5
Public Administration: 81.1
Social Sciences and History: 51.8

-
Year: 2010
Agriculture: 48.73004227
Architecture: 42.06672091
Art and Performance: 61.3
Biology: 59.01025521
Business: 48.75798769
Communications and Journalism: 62.5
Computer Science: 17.6
Education: 79.61862451
Engineering: 17.2
English: 67.92810557
Foreign Languages: 69

(continues on next page)

10 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

Health Professions: 85
Math and Statistics: 43.1
Physical Sciences: 40.2
Psychology: 77
Public Administration: 81.7
Social Sciences and History: 49.3

It is hard to beat the compactness of CSV for tabular data, however NestedText has the following advantages over CSV
and TSV as a human readable and writable data file format that may make it preferable in some situation:

• text does not require quoting or escaping

• arbitrary data hierarchies are supported

• file representation tends to be tall and skinny rather than short and fat

• easier to read

1.2.5 Really, Only Strings?

NestedText and its alternatives are all trying to represent structured data. Of them, only NestedText limits you to strings
for the scalar values. The alternatives all allow other data types to be represented as well, such as integers, reals,
Booleans, etc. Since real applications invariably require all these data types, you might think, “if I use NestedText,
I’ll have to convert all these strings myself, and that will make my application code more complicated”. In fact, using
NestedText will make your application code more robust with little to no increase in complexity:

For robustness, all data should be validated when reading it to assure there are no errors. This is performed conveniently
and efficiently with a schema. Schemas are used to specify the expected type for each value and are easily extended
to perform type conversion as needed. For example, if a particular value should be an integer but a string is provided,
as with NestedText, the package that implements the schema can be configured to attempt to convert the string to an
integer and only report an error if it cannot.

Applications that need to interpret the input data always make assumptions about the data being read. For example,
email fields are expected to contain strings that can be interpreted as an email address. In practice, every field can and
probably should be checked in some way. Even with NestedText that constrains the scalar values to strings, one must
assure that a list or dictionary is not given where a string is expected. When every value is being checked there little to
no benefit to the underlying data receptacle being aware the type of each value. Rather it is very constraining.

Supporting native data types raises its own issues:

NestedText gains simplicity by jettisoning native support for scalar data types other than strings. However it is important
to recognize that the alternatives must do this as well. There are an unlimited number of data types that can be supported
and they cannot support them all. Common data types that are generally not supported include dates, times, and
quantities (numbers with units, such as $20.00 and 47 k). With all languages there is a decision to be made: what
types should be supported natively. Each additional type increases the complexity of the format. If only strings are
supported, as with NestedText, things are pretty simple. Adding any other data type then requires supporting quoting
and escaping, which is a substantial jump up in complexity.

1.2. Alternatives 11

NestedText, Release 3.3.0

Data types that are not natively supported are generally passed as strings that are later converted to the right type by the
end application. This approach actually provides substantial benefits. The end application has context that a general
purpose data reader cannot have. For example, the date 10/07/08 could represent either 10 August 2008 or October
7, 2008, or perhaps even July 8, 2010. Only the user and the application would know which.

The type of the value 2 is ambiguous; it may be integer or real. This may cause problems when combined into an array,
such as [1.85, 1.94, 2, 2.09]. A casually written program may choke on a non-homogeneous array that consists
of an integer among the floats. This is the reason that JSON does not distinguish between integers and reals.

YAML is notorious for ambiguities because it allows unquoted strings. 2 is a valid integer, real, and string. Similarly,
no is a valid Boolean and string. In fact, every single value in YAML that is not quoted is also a valid string. Many
people that use YAML simply quote every string, but that does not solve all the problems because things that are not
intended to be strings can be converted to strings, such as 09.

There is also the issue of the internal representation of the data. Is the integer represented using 32 bits, 64 bits, or can
the integer by arbitrarily large? Is a real number represented as a 64 bit or 128 bit float, or is it represented by a decimal
or rational number? Are exceptional values such as infinity or not-a-number supported? Sometimes such things are
specified in the definition of the format, but often they are left as details of the implementation. The result could be
overflows, underflows, loss of precision, errors, and compatibility issues.

It is common to format real numbers so as to convey the meaningful precision of the number. For example, 2 or 2.
represents a number with one digit of precision, 2.0 represents a number with two digits of precision, 2.00 represents
a number with three digits of precision, etc. This information on the precision of the number is lost when these numbers
are converted to the float data type.

This same issue also causes problems when representing version numbers. The number 3.10 is used to represent
version three point ten, but when converted to a float becomes version three point one.

There are also cases where multiple formats map to the same underlying data type. For example, integers may be given
in binary, octal, decimal, or hexadecimal formats. YAML provides almost a dozen different ways to specify strings.
This causes problems when round-tripping, which is where you read a file, perhaps process it, and then write it back
out. Since the data is converted to an internal data type, the original formatting is lost, meaning that the program that
writes out the data cannot know how it was originally specified. Integers are generally written out as decimal number
regardless of how they were specified. In YAML, the writer checks to see if a string contains a newline and if so simply
chooses one of the 9 possible multiline string formats arbitrarily. This is why in the round-trip YAML example given
above the Python script ends up being interleaved with blank lines.

Using NestedText also makes life easier for your end-users:

Casual users may not understand that 2 is treated differently than 2.0, which may cause issues in applications that are
not carefully written.

TOML natively accepts dates and times, but only in ISO-8601 formats. Casual users are unlikely to be familiar with
this format or may find it awkward or cumbersome.

YAML natively accepts sexagesimal (base 60) numbers in the form 2:30:00, which YAML converts to 9000. If this
is a duration, it would likely imply 2 hours, 30 minutes and 0 seconds, which totals to 9000 seconds. It may be also
used for the time of day. Someone that normally uses twelve hour time formatting might write 2:30:00 AM and get a
string. Someone that uses twenty-four hours formatting might write 2:30:00 and get the integer 9000, or they might
write 02:30:00 and get a string. However, if they entered a time 12 hours later, 16:30:00, they would get an integer
again.

Native data types are distinguished from each other by using conventions that are second nature to programmers.
Conventions such as “you must quote strings”, “quote characters in strings must be escaped”, “you escape an escape
character by doubling it up”, “real numbers must contain a decimal point” and “real numbers may not contain units”.

12 Chapter 1. Contributing

https://en.wikipedia.org/wiki/ISO_8601

NestedText, Release 3.3.0

Casual users are unlikely to know these conventions, which causes frustration and errors. Forcing them to know and use
these conventions represents an undesirable and sometimes overwhelming burden. This is particularly true for YAML,
which can be a minefield even for programmers. Consider the following:

Hey there! and "Hey there!" represent the same string.
She said, "Hey there!" is a valid string, but "She said, "Hey there!"" is an error.
She said, "Hey there!" is a valid string, but She said: "Hey there!" is an error.
3.10.4 is a string, but 3.10 is a real and 3 is an integer.
10 is 10, but 010 is 8 and 09 is “09”, a string.
Now is a string, but No is a Boolean.
(1 + 2) is a string, but [1 + 2] is a list.
02:30:00 is a string but 2:30:00 is 9000.

Only programmers with substantial experience with YAML can anticipate or even understand this behavior.

Other languages have similar, but less extreme challenges, particularly the need for quoting and escaping.

Every additional supported data type brings a challenge; how to unambiguously distinguish it from the others. The
challenge is particularly acute for strings because they consist of any possible sequence of characters and so can be
confused with all other data types. NestedText addresses this issue by limiting the scalar values to only be strings. That
way, there is no need to distinguish the strings from other possible data types.

The alternatives all distinguish strings by surrounding them with quotes. This adds visual clutter and makes them
more difficult to type. This is not generally a problem if there are only a few stings, but it becomes a drag if there
is are many. However, quoting brings another challenge. Since a string can consist of any sequence of characters, it
can include the quote characters. Now the quote characters within the string must be distinguished from the quote
characters that delimit the string; a process referred to as escaping the character. This is often done with an special
escape character, generally the backslash, but may be done by duplicating the character to be escaped. The string may
naturally contain escape characters and they would need escaping as well. This represents a deep hole. For example,
consider the following Python dictionary that contains a collection of regular expressions. The regular expressions are
quoted strings that by their very nature generally require a large amount of escaping:

regexes = dict(
double_quoted_string = r'"(?:[^"\\]|\\.)*"',
single_quoted_string = r"'(?:[^'\\]|\\.)*'",
identifier = r'[a-zA-Z_][a-zA-Z_0-9]*',
number = r"[+-]?[0-9]+\.?[0-9]*(?:[eE][+-]?[0-9]+)?",

)

Converting this to JSON illustrates the problem:

{
"double_quoted_string": "\"(?:[^\"\\\\]|\\\\.)*\"",
"single_quoted_string": "'(?:[^'\\\\]|\\\\.)*'",
"identifier": "[a-zA-Z_][a-zA-Z_0-9]*",
"number": "[+-]?[0-9]+\\.?[0-9]*(?:[eE][+-]?[0-9]+)?"

}

The number of escape characters more than doubled. This problem does not occur in NestedText, which is actually
cleaner than the original Python:

1.2. Alternatives 13

NestedText, Release 3.3.0

double_quoted_string: "(?:[^"\\]|\\.)*"
single_quoted_string: '(?:[^'\\]|\\.)*'
identifier: [a-zA-Z_][a-zA-Z_0-9]*
number: [+-]?[0-9]+\.?[0-9]*(?:[eE][+-]?[0-9]+)?

In general, users that are expected to read, write, or modify structured data benefit from formats tailored to their needs.
That only happens when the values are passed as strings that are interpreted by the end application.

Native data types should only be used when both the data generator and the data consumer are machines, preferably
using the same software packages to both read and write the data files. In such cases, only programmers would view
or edit the files, and only in unusual cases.

Native data types provide little value but many drawbacks. By limiting the scalar values to be only strings, NestedText
sidesteps all of these issues, and it is unique in that regard.

1.3 Language introduction

This is a overview of the syntax of a NestedText document, which consists of a nested collection of dictionaries, lists,
and strings where indentation is used to indicate nesting. All leaf values must be simple text or empty. You can find
more specifics in the next section.

1.3.1 Dictionaries

A dictionary is an ordered collection of key value pairs:

key 1: value 1
key 2: value 2
key 3: value 3

A dictionary item is a single key value pair. A dictionary is all adjacent dictionary items in which the keys all begin at
the same level of indentation. There are several different ways to specify dictionaries.

In the first form, the key and value are separated by a dictionary tag, which is a colon followed by a space or newline
(:␣ or :). The key must be a string and must not start with a -␣, >␣, :␣, [, {, #, or white space character; or contain
newline characters or the :␣ character sequence. Any spaces between the key and the tag are ignored.

The value of this dictionary item may be a rest-of-line string, a multiline string, a list, or a dictionary. If it is a rest-of-
line string, it contains all characters following the tag that separates the key from the value (:␣). For all other values,
the rest of the line must be empty, with the value given on the next line, which must be further indented.

key 1: value 1
key 2:
key 3:

- value 3a
- value 3b

key 4:
key 4a: value 4a
key 4b: value 4b

key 5:
(continues on next page)

14 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

> first line of value 5
> second line of value 5

Which is equivalent to the following JSON code:

{
"key 1": "value 1",
"key 2": "",
"key 3": [

"value 3a",
"value 3b"

],
"key 4": {

"key 4a": "value 4a",
"key 4b": "value 4b"

},
"key 5": "first line of value 5\nsecond line of value 5"

}

A second less common form of a dictionary item employs multiline keys. In this case there are no limitations on the key
other than it being a string. Each line of a multiline key is introduced with a colon (:) followed by a space or newline.
The key is all adjacent lines at the same level that start with a colon tag with the tags removed but leading and trailing
white space retained, including all newlines except the last.

This form of dictionary does not allow rest-of-line string values; you would use a multiline string value instead:

: key 1
: the first key

> value 1
: key 2: the second key

- value 2a
- value 2b

A dictionary may consist of dictionary items of either form.

The final form of a dictionary is the inline dictionary. This is a compact form where all the dictionary items are given
on the same line. There is a bit of syntax that defines inline dictionaries, so the keys and values are constrained to
avoid ambiguities in the syntax. An inline dictionary starts with an opening brace ({), ends with a matching closing
brace (}), and contains inline dictionary items separated by commas (,). An inline dictionary item is a key and value
separated by a colon (:). A space need not follow the colon. The keys are inline strings and the values may be inline
strings, inline lists, and inline dictionaries. An empty dictionary is represented with {} (there can be no space between
the opening and closing braces). Leading and trailing spaces are stripped from keys and string values within inline
dictionaries.

For example:

{key 1: value 1, key 2: value 2, key 3: value 3}

{key 1: value 1, key 2: [value 2a, value 2b], key 3: {key 3a: value 3a, key 3b: value 3b}
→˓}

1.3. Language introduction 15

NestedText, Release 3.3.0

1.3.2 Lists

A list is an ordered collection of values:

- value 1
- value 2
- value 3

A list item is introduced with a list tag: a dash followed by a space or a newline at the start of a line (-␣ or -). All
adjacent list items at the same level of indentation form the list.

The value of a list item may be a rest-of-line string, a multiline string, a list, or a dictionary. If it is a rest-of-line string,
it contains all characters that follow the tag that introduces the list item. For all other values, the rest of the line must
be empty, with the value given on the next line, which must be further indented.

- value 1
-
-

- value 3a
- value 3b

-
key 4a: value 4a
key 4b: value 4b

-
> first line of value 5
> second line of value 5

Which is equivalent to the following JSON code:

[
"value 1",
"",
[

"value 3a",
"value 3b"

],
{

"key 4a": "value 4a",
"key 4b": "value 4b"

},
"first line of value 5\nsecond line of value 5"

]

Another form of a list is the inline list. This is a compact form where all the list items are given on the same line.
There is a bit of syntax that defines the list, so the values are constrained to avoid ambiguities in the syntax. An inline
list starts with an opening bracket ([), ends with a matching closing bracket (]), and contains inline values separated
by commas. The values may be inline strings, inline lists, and inline dictionaries. An empty list is represented by []
(there should be no space between the opening and closing brackets). Leading and trailing spaces are stripped from
string values within inline lists.

For example:

[value 1, value 2, value 3]

16 Chapter 1. Contributing

NestedText, Release 3.3.0

[value 1, [value 2a, value 2b], {key 3a: value 3a, key 3b: value 3b}]

[] is not treated as an empty list as there is space between the brackets, rather this represents a list with a single empty
string value. The contents of the brackets, which consists only of white space, is stripped of its padding, leaving an
empty string.

1.3.3 Strings

There are three types of strings: rest-of-line strings, multiline strings, and inline strings. Rest-of-line strings are simply
all the characters on a line that follow a list tag (-␣) or dictionary tag (:␣), including any leading or trailing white space.
They can contain any character other than a newline. The content of the rest-of-line string starts after the first space
that follows the dash or colon of the tag:

code : input signed [7:0] level
regex : [+-]?([0-9]*[.])?[0-9]+\s*\w*
math : $x = \frac{{-b \pm \sqrt {b^2 - 4ac}}}{2a}$
unicode: José and François

Multi-line strings are all adjacent lines that are prefixed with a string tag; the greater-than symbol followed by a space
or a newline (>␣ or >). The content of each line starts after the first space that follows the greater-than symbol:

> This is the first line of a multiline string, it is indented.
> This is the second line, it is not indented.

You can include empty lines in the string simply by specifying the greater-than symbol alone on a line:

>
> “The worth of a man to his society can be measured by the contribution he
> makes to it — less the cost of sustaining himself and his mistakes in it.”
>
> — Erik Jonsson
>

The multiline string is all adjacent lines that start with a string tag with the tags removed and the lines joined together
with newline characters inserted between each line. Except for the space that follows the > in the tag, white space from
both the beginning and the end of each line is retained, along with all newlines except the last.

Inline strings are the string values specified in inline dictionaries and lists. They are somewhat constrained in the
characters that they may contain; nothing that might be confused with the syntax characters used by the inline list or
dictionary that contains it. Specifically, inline strings may not contain newlines or any of the following characters: [,
], {, }, or ,. In addition, inline strings that are contained in inline dictionaries may not contain :. Leading and trailing
white space are ignored with inline strings.

1.3.4 Comments

Lines that begin with a hash as the first non-white-space character, or lines that are empty or consist only of white space
are comment lines and are ignored. Indentation is not significant on comment lines.

this line is ignored

this line is also ignored, as is the blank line above.

1.3. Language introduction 17

NestedText, Release 3.3.0

Comment lines are ignored when determining whether adjacent lines belong to the same dictionary, list, or string. For
example, the following represents one multiline string:

> this is the first line of a multiline string
this line is ignored
> this is the second line of the multiline string

1.3.5 Nesting

A value for a dictionary or list item may be a rest-of-line string or it may be a nested dictionary, list, multiline string,
or inline dictionary or list. Indentation is used to indicate nesting. Indentation increases to indicate the beginning of
a new nested object, and indentation returns to a prior level to indicate its end. In this way, data can be nested to an
arbitrary depth:

Contact information for our officers

Katheryn McDaniel:
position: president
address:

> 138 Almond Street
> Topeka, Kansas 20697

phone:
cell: 1-210-555-5297
work: 1-210-555-3423
home: 1-210-555-8470

Katheryn prefers that we always call her on her cell phone.
email: KateMcD@aol.com
kids:

- Joanie
- Terrance

Margaret Hodge:
position: vice president
address:

> 2586 Marigold Lane
> Topeka, Kansas 20697

phone:
{cell: 1-470-555-0398, home: 1-470-555-7570}

email: margaret.hodge@ku.edu
kids:

[Arnie, Zach, Maggie]

It is recommended that each level of indentation be represented by a consistent number of spaces (with the suggested
number being 2 or 4). However, it is not required. Any increase in the number of spaces in the indentation represents
an indent and the number of spaces need only be consistent over the length of the nested object.

The data can be nested arbitrarily deeply.

18 Chapter 1. Contributing

NestedText, Release 3.3.0

1.3.6 NestedText Files

NestedText files should be encoded with UTF-8 and should end with a newline. The top-level object must not be
indented.

The name used for the file is arbitrary but it is tradition to use a .nt suffix. If you also wish to further distinguish the file
type by giving the schema, it is recommended that you use two suffixes, with the suffix that specifies the schema given
first and .nt given last. For example: officers.addr.nt.

1.4 Language reference

The NestedText format follows a small number of simple rules. Here they are.

Encoding:

A NestedText document is encoded in UTF-8 and may contain any printing UTF-8 character.

Line breaks:

A NestedText document is partitioned into lines where the lines are split by CR LF, CR, or LF where CR
and LF are the ASCII carriage return and line feed characters. A single document may employ any or all
of these ways of splitting lines.

Line types:

Each line in a NestedText document is assigned one of the following types: comment, blank, list item,
dictionary item, string item, key item or inline. Any line that does not fit one of these types is an error.

Blank lines:

Blank lines are lines that are empty or consist only of white space characters (spaces or tabs). Blank lines
are ignored.

Line-type tags:

Most remaining lines are identified by the presence of tags, where a tag is:

1. the first dash (-), colon (:), or greater-than symbol (>) on a line when followed immediately by a
space or line break;

2. or a hash {#), left bracket ([), or left brace ({) as the first non-white space character on a line.

Most of these symbols only introduce tags when they are the first non-space character on a line, but colon
tags need not start the line.

The first (left-most) tag on a line determines the line type. Once the first tag has been found on the line,
any subsequent occurrences of any of the line-type tags are treated as simple text. For example:

- And the winner is: {winner}

In this case the leading -␣ determines the type of the line and the :␣ is simply treated as part of the
remaining text on the line.

Comments:

Comments are lines that have # as the first non-white-space character on the line. Comments are ignored.

String items:

If the first non-space character on a line is a greater-than symbol followed immediately by a space (>␣) or
a line break, the line is a string item. After comments and blank lines have been removed, adjacent string
items with the same indentation level are combined in order into a multiline string. The string value is the

1.4. Language reference 19

https://en.wikipedia.org/wiki/UTF-8

NestedText, Release 3.3.0

multiline string with the tags removed. Any leading white space that follows the tag is retained, as is any
trailing white space and all newlines except the last.

String values may contain any printing UTF-8 character.

List items:

If the first non-space character on a line is a dash followed immediately by a space (-␣) or a line break,
the line is a list item. Adjacent list items with the same indentation level are combined in order into a list.
Each list item has a tag and a value. The tag is only used to determine the type of the line and is discarded
leaving the value. The value takes one of three forms.

1. If the line contains further text (characters after the dash-space), then the value is that text. The text
ends at the line break and may contain any other printing UTF-8 character.

2. If there is no further text on the line and the next line has greater indentation, then the next line holds
the value, which may be a list, a dictionary, or a multiline string.

3. Otherwise the value is empty; it is taken to be an empty string.

Key items:

If the first non-space character on a line is a colon followed immediately by a space (:␣) or a line break, the
line is a key item. After comments and blank lines have been removed, adjacent key items with the same
indentation level are combined in order into a multiline key. The key itself is the multiline string with the
tags removed. Any leading white space that follows the tag is retained, as is any trailing white space and
all newlines except the last.

Key values may contain any printing UTF-8 character.

An indented value must follow a multiline key. The indented value may be either a multiline string, a list
or a dictionary. The combination of the key item and its value forms a dictionary item.

Dictionary items:

Dictionary items take two possible forms.

The first is a dictionary item with inline key. In this case the line starts with a key followed by a dictionary
tag: a colon followed by either a space (:␣) or a newline. The dictionary item consists of the key, the tag,
and the trailing value. Any space between the key and the tag is ignored.

The inline key precedes the tag. It must be a non-empty string and must not:

1. contain a line break character.

2. start with a list item, string item or key item tag,

3. start with [or {,

4. contain a dictionary item tag, or

5. contain leading spaces (any spaces that follow the key are ignored).

The tag is only used to determine the type of the line and is discarded leaving the key and the value, which
follows the tag. The value takes one of three forms.

1. If the line contains further text (characters after the colon-space), then the value is that text. The text
ends at the line break and may contain any other printing UTF-8 character.

2. If there is no further text on the line and the next line has greater indentation, then the next line holds
the value, which may be a list, a dictionary, or a multiline string.

3. Otherwise the value is empty; it is taken to be an empty string.

20 Chapter 1. Contributing

NestedText, Release 3.3.0

The second form of dictionary item is the dictionary item with multiline key. It consists of a multiline key
value followed by an indented value. The value may be a multiline string, list, or dictionary; or an inline
list or dictionary.

Adjacent dictionary items of either form with the same indentation level are combined in order into a
dictionary.

Inline Lists and Dictionaries:

If the first character on a line is either a left bracket ([) or a left brace ({) the line is an inline structure. A
bracket introduces an inline list and a brace introduces an inline dictionary.

An inline list starts with an open bracket ([), ends with a matching closed bracket (]), contains inline
values separated by commas (,), and is contained on a single line. The values may be inline strings, inline
lists, and inline dictionaries.

An inline dictionary starts with an open brace ({), ends with a matching closed brace (}), contains inline
dictionary items separated by commas (,), and is contained on a single line. An inline dictionary item is
a key and value separated by a colon (:). A space need not follow the colon and any spaces that do follow
the colon are ignored. The keys are inline strings and the values may be inline strings, inline lists, and
inline dictionaries.

Inline strings are the string values specified in inline dictionaries and lists. They are somewhat constrained
in the characters that theymay contain; nothing is allowed that might be confusedwith the syntax characters
used by the inline list or dictionary that contains it. Specifically, inline strings may not contain newlines
or any of the following characters: [,], {, }, or ,. In addition, inline strings that are contained in inline
dictionaries may not contain :. Leading and trailing white space are ignored with inline strings, this
includes spaces, tabs, Unicode spaces, etc.

Both inline lists and dictionaries may be empty, and represent the only way to represent empty lists or
empty dictionaries in NestedText. An empty dictionary is represented with {} and an empty list with
[]. In both cases there must be no space between the opening and closing delimiters. An inline list that
contains only white spaces, such as [], is treated as a list with a single empty string (the whitespace
is considered a string value, and string values have leading and trailing spaces removed, resulting in an
empty string value). If a list contains multiple values, no white space is required to represent an empty
string value. Thus, [] represents an empty list, [] a list with a single empty string value, and [,] a list
with two empty string values.

Indentation:

Leading spaces on a line represents indentation. Only ASCII spaces are allowed in the indentation. Specif-
ically, tabs and the various Unicode spaces are not allowed.

There is no indentation on the top-level object.

An increase in the number of spaces in the indentation signifies the start of a nested object. Indentation
must return to a prior level when the nested object ends.

Each level of indentation need not employ the same number of additional spaces, though it is recommended
that you choose either 2 or 4 spaces to represent a level of nesting and you use that consistently throughout
the document. However, this is not required. Any increase in the number of spaces in the indentation
represents an indent and a decrease to return to a prior indentation represents a dedent.

An indented value may only follow a list item or dictionary item that does not have a value on the same
line. An indented value must follow a key item.

Escaping and Quoting:

There is no escaping or quoting in NestedText. Once the line has been identified by its tag, and the tag is
removed, the remaining text is taken literally.

Empty document:

1.4. Language reference 21

NestedText, Release 3.3.0

A document may be empty. A document is empty if it consists only of comments and blank lines. An
empty document corresponds to an empty value of unknown type.

End of file:

The last character in a NestedText document file is a newline.

Result:

When a document is converted from NestedText the result is a hierarchical collection of dictionaries, lists
and strings. All dictionary keys are strings.

1.5 Minimal NestedText

Minimal NestedText is a subset of NestedText that foregoes some of the complications of NestedText. It sacrifices the
completeness of NestedText for an even simpler data file format that is still appropriate for a surprisingly wide variety
of applications, such as most configuration files. The simplicity of Minimal NestedText makes it very easy to create
readers and writers. Indeed, writing such functions is good programming exercise for people new to recursion.

Minimal NestedText is NestedText without support for multi-line keys and inline dictionaries and lists.

If you choose to create a Minimal NestedText reader or writer it is important to code it in such a way as to discourage
the creation Minimal NestedText documents that are invalid NestedText. Thus, your implementation should disallow
keys that start with : ``, ``[or {. Also, please clearly indicate that is only supports Minimal NestedText to avoid
any confusion.

Many of the examples given in this document conform to the Minimal NestedText subset. For convenience, here is
another:

name: No-Soak Instant Pot Chili

description:
> Chili with meat and beans.
>
> Takes a little over an hour from start to finish while starting with
> dried beans that have not be pre-soaked.

source: https://thefreerangelife.com/instant-pot-chili

ingredients:
ground beef: 1-2 pounds
onion: 1
garlic: 3-4 cloves
dry red kidney beans: 1 16-oz bag
broth: 4 cups
chili powder: 3 tablespoon
dried oregano: 1-2 teaspoon
cumin: 1 teaspoon (optional)
dice tomatoes: 6 cups (2 large cans or grow your own)
water: 2-3 cups
salt and pepper: to taste

directions:
-
> Place the 4 cups of broth and the dry kidney beans into the pot of your

(continues on next page)

22 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

> Instant Pot
-
> Add 2 T of chili powder and salt and pepper

-
> Place the lid on your Instant Pot and press the bean setting. The timer
> should read 30 minutes. Allow it to come to pressure and cook.

-
> While the beans are cooking, saute beef with onion and garlic.

-
> When the timer beeps, do a quick release and open up the pot

-
> Add the meat, tomatoes, water, oregano, cumin, and the additional 1T of
> chili powder and stir well.

-
> At this point your pot should be quite full. Close up the Instant Pot
> again and hit the chili/beans button once more. Allow it to come to
> pressure and cook.

-
> Do a quick release when the chili has finished cooking.

comments:
> This instant pot chili assumes dried beans.
>
> It takes TWO 30 minute cycles.
> One with just the beans and one with all the ingredients together.
>
> If you are not using dried beans, you can skip the first cycle and
> simply add all of the ingredients to the pot and cook for 30 minutes
> at high pressure.

Minimal NestedText is powerful enough to satisfy most needs. It is only necessary to use the extended capabilities of
NestedText if you have keys that start with reserved characters or contain newlines or if your document contains lots of
short lists or dictionaries. In the later situation, being constrained to use Minimal NestedText might make entry tedious.

Here is another example of Minimal NestedText that shows off a particular strength of NestedText, its ability to hold
code fragments without the need for quoting or escaping. It holds some Parametrize From File test cases for pytest:

test_meta_view:
-
id: base
obj:
> class DummyConfig(Config):
> def load(self):
> yield DictLayer({"x": 1}, location="/path/to/file")
>
> class DummyObj:
> __config__ = [DummyConfig]
> meta = byoc.meta_view()
> x = byoc.param()
>
> obj = DummyObj()
> obj.x

expected:
(continues on next page)

1.5. Minimal NestedText 23

https://parametrize-from-file.readthedocs.io
https://docs.pytest.org

NestedText, Release 3.3.0

(continued from previous page)

x:
type: LayerMeta
location: /path/to/file

-
id: never-accessed
obj:
> class DummyObj:
> meta = byoc.meta_view()
> x = byoc.param()

expected:
x: NeverAccessedMeta

1.6 Related projects

1.6.1 Reference Material

nestedtext docs

NestedText documentation and language specification.

nestedtext source

Source code repository for language documentation and Python implementation. Report any issues here.

nestedtext_tests

Official NestedText test suite. Also included as submodule in nestedtext.

1.6.2 Implementations

nestex

Go implementation of NestedText (supports NestedText v3.0).

nestedtext-ruby

Ruby implementation of NestedText (supports NestedText v3.0).

24 Chapter 1. Contributing

https://github.com/kenkundert/nestedtext
https://golang.org/
https://www.ruby-lang.org/en/

NestedText, Release 3.3.0

janet-nested-text

Janet implementation of NestedText (supports NestedText v3.0).

zig-nestedtext

Zig implementation of NestedText (slight subset of NestedText v2.0).

1.6.3 Utilities

parametrize from file

Separate your test cases, held in NestedText, from your PyTest test code.

vim-nestedtext

Vim syntax files for NestedText (supports NestedText v3.0).

visual studio

Syntax files for Visual Studio (supports NestedText v1.0).

1.7 Language changes

Currently the language and the Python implementation share version numbers. Since the language is more stable than
the implementation, you will see versions that include no changes to the language.

1.7.1 Latest development version

Version: 3.3.0
Released: 2022-06-07

1.7.2 v3.3 (2022-06-07)

• Defined Minimal NestedText, a subset of NestedText.

• NestedText document files should end with a newline.

1.7. Language changes 25

https://janet-lang.org/
https://ziglang.org
https://docs.pytest.org

NestedText, Release 3.3.0

1.7.3 v3.2 (2022-01-17)

• No changes.

1.7.4 v3.1 (2021-07-23)

• No changes.

1.7.5 v3.0 (2021-07-17)

• Deprecate trailing commas in inline lists and dictionaries.

Warning: Be aware that aspects of this version are not backward compatible. Specifically, trailing commas are
no longer supported in inline dictionaries and lists. In addition, [] now represents a list with an that contains an
empty string, whereas previously it represented an empty list.

1.7.6 v2.0 (2021-05-28)

• Deprecate quoted dictionary keys.

• Add multiline dictionary keys to replace quoted keys.

• Add single-line lists and dictionaries.

Warning: Be aware that this version is not backward compatible because it no longer supports quoted dictionary
keys.

1.7.7 v1.3 (2021-01-02)

• No changes.

1.7.8 v1.2 (2020-10-31)

• Treat CR LF, CR, or LF as a line break.

1.7.9 v1.1 (2020-10-13)

• No changes.

26 Chapter 1. Contributing

NestedText, Release 3.3.0

1.7.10 v1.0 (2020-10-03)

• Initial release.

1.8 Basic use

The NestedText Python API is similar to that of JSON, YAML, TOML, etc.

1.8.1 Installation

pip3 install --user nestedtext

1.8.2 NestedText Reader

The loads() function is used to convert NestedText held in a string into a Python data structure. If there is a problem
interpreting the input text, a NestedTextError exception is raised.

>>> import nestedtext as nt

>>> content = """
... access key id: 8N029N81
... secret access key: 9s83109d3+583493190
... """

>>> try:
... data = nt.loads(content, top='dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'access key id': '8N029N81', 'secret access key': '9s83109d3+583493190'}

You can also read directly from a file or stream using the load() function.

>>> from inform import fatal, os_error

>>> try:
... groceries = nt.load('examples/groceries.nt', top='dict')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

>>> print(groceries)
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Notice that the type of the return value is specified to be ‘dict’. This is the default. You can also specify ‘list’, ‘str’, or
‘any’ (or dict, list, str, or any). All but ‘any’ constrain the data type of the top-level of the NestedText content.

The load functions provide a keymap argument that is useful for adding line numbers to error message. This feature
is demonstrated in Validate with Voluptuous. They also provide a normalize_key argument that can be used to ignore

1.8. Basic use 27

NestedText, Release 3.3.0

insignificant variation in keys, such as character case, or to convert keys to a desired form, such as to identifiers. These
features are described in loads().

1.8.3 NestedText Writer

The dumps() function is used to convert a Python data structure into a NestedText string. As before, if there is a
problem converting the input data, a NestedTextError exception is raised.

>>> try:
... content = nt.dumps(data)
... except nt.NestedTextError as e:
... e.terminate()

>>> print(content)
access key id: 8N029N81
secret access key: 9s83109d3+583493190

The dump() function writes NestedText to a file or stream.

>>> try:
... nt.dump(data, 'examples/access.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

The dump functions provide arguments that can control the output format and can control the conversion of data types
into forms that can be dumped. These features are described in dumps().

1.9 Schemas

Because NestedText explicitly does not attempt to interpret the data it parses, it is meant to be paired with a tool that can
both validate the data and convert them to the expected types. For example, if you are expecting a date for a particular
field, you would want to validate that the input looks like a date (e.g. YYYY/MM/DD) and then convert it to a useful type
(e.g. arrow.Arrow). You can do this on an ad hoc basis, or you can apply a schema.

A schema is the specification of what fields are expected (e.g. “birthday”), what types they should be (e.g. a date),
and what values are legal (e.g. must be in the past). There are many libraries available for applying a schema to data
such as those parsed by NestedText. Because different libraries may be more or less appropriate in different scenarios,
NestedText avoids favoring any one library specifically:

• pydantic: Define schema using type annotations

• voluptuous: Define schema using objects

• schema: Define schema using objects

• colander: Define schema using classes

• schematics: Define schema using classes

• cerebus : Define schema using strings

• valideer: Define schema using strings

• jsonschema: Define schema using JSON

28 Chapter 1. Contributing

https://pydantic-docs.helpmanual.io/
https://github.com/alecthomas/voluptuous
https://github.com/keleshev/schema
https://docs.pylonsproject.org/projects/colander/en/latest/
http://schematics.readthedocs.io/en/latest/
https://docs.python-cerberus.org/en/stable/
https://github.com/podio/valideer
https://python-jsonschema.readthedocs.io/en/latest/

NestedText, Release 3.3.0

See the Examples page for examples of how to use some of these libraries with NestedText.

The approach of using separate tools for parsing and interpreting the data has two significant advantages that are worth
briefly highlighting. First is that the validation tool understands the context and meaning of the data in a way that the
parsing tool cannot. For example, “12” can be an integer if it represents a day of a month, a float if it represents the
output voltage of a power brick, or a string if represents the version of a software package. Attempting to interpret “12”
without this context is inherently unreliable. Second is that when data is interpreted by the parser, it puts the onus on
the user to specify the correct types. Going back to the previous example, the user would be required to know whether
12, 12.0, or "12" should be entered. It does not make sense for this decision to be made by the user instead of the
application.

1.10 Examples

1.10.1 Validate with Pydantic

This example shows how to use pydantic to validate and parse aNestedText file. The file in this case specifies deployment
settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
- www.example.com

database:
engine: django.db.backends.mysql
host: db.example.com
port: 3306
user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note that basic types like integers, strings, Booleans, and lists are specified using
standard type annotations. Dictionaries with specific keys are represented by model classes, and it is possible to refer-
ence one model from within another. Pydantic also has built-in support for validating email addresses, which we can
take advantage of here:

#!/usr/bin/env python3

import nestedtext as nt
from pydantic import BaseModel, EmailStr
from typing import List
from pprint import pprint

class Database(BaseModel):
engine: str
host: str
port: int
user: str

class Config(BaseModel):
debug: bool

(continues on next page)

1.10. Examples 29

https://pydantic-docs.helpmanual.io
https://pydantic-docs.helpmanual.io

NestedText, Release 3.3.0

(continued from previous page)

secret_key: str
allowed_hosts: List[str]
database: Database
webmaster_email: EmailStr

obj = nt.load('deploy.nt')
config = Config.parse_obj(obj)

pprint(config.dict())

This produces the following data structure:

{'allowed_hosts': ['www.example.com'],
'database': {'engine': 'django.db.backends.mysql',

'host': 'db.example.com',
'port': 3306,
'user': 'www'},

'debug': False,
'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
'webmaster_email': 'admin@example.com'}

1.10.2 Validate with Voluptuous

This example shows how to use voluptuous to validate and parse a NestedText file and it demonstrates how to use the
keymap argument from loads() or load() to add location information to Voluptuous error messages.

The input file is the same as in the previous example, i.e. deployment settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
- www.example.com

database:
engine: django.db.backends.mysql
host: db.example.com
port: 3306
user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note how the structure of the data is specified using basic Python objects. The
Coerce() function is necessary to have voluptuous convert string input to the given type; otherwise it would simply
check that the input matches the given type:

#!/usr/bin/env python3

import nestedtext as nt
from voluptuous import Schema, Coerce, MultipleInvalid
from inform import error, full_stop, terminate
from pprint import pprint

(continues on next page)

30 Chapter 1. Contributing

https://github.com/alecthomas/voluptuous

NestedText, Release 3.3.0

(continued from previous page)

schema = Schema({
'debug': Coerce(bool),
'secret_key': str,
'allowed_hosts': [str],
'database': {

'engine': str,
'host': str,
'port': Coerce(int),
'user': str,

},
'webmaster_email': str,

})
try:

keymap = {}
raw = nt.load('deploy.nt', keymap=keymap)
config = schema(raw)

except nt.NestedTextError as e:
e.terminate()

except MultipleInvalid as e:
for err in e.errors:

kind = 'key' if 'key' in err.msg else 'value'
loc = keymap[tuple(err.path)]
error(full_stop(err.msg), culprit=err.path, codicil=loc.as_line(kind))

terminate()

pprint(config)

This produces the same result as in the previous example.

1.10.3 JSON to NestedText

This example implements a command-line utility that converts a JSON file to NestedText. It demonstrates the use of
dumps() and NestedTextError.

#!/usr/bin/env python3
"""
Read a JSON file and convert it to NestedText.

usage:
json-to-nestedtext [options] [<filename>]

options:
-f, --force force overwrite of output file
-i <n>, --indent <n> number of spaces per indent [default: 4]
-w <n>, --width <n> desired maximum line width; specifying enables

use of single-line lists and dictionaries as long
as the fit in given width [default: 0]

If <filename> is not given, JSON input is taken from stdin and NestedText output
is written to stdout.

(continues on next page)

1.10. Examples 31

NestedText, Release 3.3.0

(continued from previous page)

"""

from docopt import docopt
from inform import done, fatal, full_stop, os_error, warn
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:

indent = int(cmdline['--indent'])
except Exception:

warn('expected positive integer for indent.', culprit=cmdline['--indent'])
indent = 4

try:
width = int(cmdline['--width'])

except Exception:
warn('expected non-negative integer for width.', culprit=cmdline['--width'])
width = 0

try:
read JSON content; from file or from stdin
if input_filename:

input_path = Path(input_filename)
json_content = input_path.read_text(encoding='utf-8')

else:
json_content = sys.stdin.read()

data = json.loads(json_content)

convert to NestedText
nestedtext_content = nt.dumps(data, indent=indent, width=width) + "\n"

output NestedText content; to file or to stdout
if input_filename:

output_path = input_path.with_suffix('.nt')
if output_path.exists():

if not cmdline['--force']:
fatal('file exists, use -f to force over-write.', culprit=output_path)

output_path.write_text(nestedtext_content, encoding='utf-8')
else:

sys.stdout.write(nestedtext_content)

except OSError as e:
fatal(os_error(e))

except nt.NestedTextError as e:
e.terminate()

except KeyboardInterrupt:
done()

(continues on next page)

32 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

except json.JSONDecodeError as e:
create a nice error message with surrounding context
msg = e.msg
culprit = input_filename
codicil = None
try:

lineno = e.lineno
culprit = (culprit, lineno)
colno = e.colno
lines_before = e.doc.split('\n')[lineno-2:lineno]
lines = []
for i, l in zip(range(lineno-len(lines_before), lineno), lines_before):

lines.append(f'{i+1:>4}> {l}')
lines_before = '\n'.join(lines)
lines_after = e.doc.split('\n')[lineno:lineno+1]
lines = []
for i, l in zip(range(lineno, lineno + len(lines_after)), lines_after):

lines.append(f'{i+1:>4}> {l}')
lines_after = '\n'.join(lines)
codicil = f"{lines_before}\n {colno*' '}\n{lines_after}"

except Exception:
pass

fatal(full_stop(msg), culprit=culprit, codicil=codicil)

Be aware that not all JSON data can be converted to NestedText, and in the conversion much of the type information is
lost.

json-to-nestedtext can be used as a JSON pretty printer:

> json-to-nestedtext < fumiko.json
treasurer:

name: Fumiko Purvis
address:

> 3636 Buffalo Ave
> Topeka, Kansas 20692

phone: 1-268-555-0280
email: fumiko.purvis@hotmail.com
additional roles:

- accounting task force

1.10.4 NestedText to JSON

This example implements a command-line utility that converts a NestedText file to JSON. It demonstrates the use of
load() and NestedTextError.

#!/usr/bin/env python3
"""
Read a NestedText file and convert it to JSON.

usage:
nestedtext-to-json [options] [<filename>]

(continues on next page)

1.10. Examples 33

NestedText, Release 3.3.0

(continued from previous page)

options:
-f, --force force overwrite of output file
-d, --dedup de-duplicate keys in dictionaries

If <filename> is not given, NestedText input is taken from stdin and JSON output
is written to stdout.
"""

from docopt import docopt
from inform import done, fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

def de_dup(key, value, data, state):
if key not in state:

state[key] = 1
state[key] += 1
return f"{key}#{state[key]}"

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
on_dup = de_dup if cmdline['--dedup'] else None

try:
if input_filename:

input_path = Path(input_filename)
data = nt.load(input_path, top='any', on_dup=de_dup)
json_content = json.dumps(data, indent=4, ensure_ascii=False)
output_path = input_path.with_suffix('.json')
if output_path.exists():

if not cmdline['--force']:
fatal('file exists, use -f to force over-write.', culprit=output_path)

output_path.write_text(json_content, encoding='utf-8')
else:

data = nt.load(sys.stdin, top='any', on_dup=de_dup)
json_content = json.dumps(data, indent=4, ensure_ascii=False)
sys.stdout.write(json_content + '\n')

except OSError as e:
fatal(os_error(e))

except nt.NestedTextError as e:
e.terminate()

except KeyboardInterrupt:
done()

34 Chapter 1. Contributing

NestedText, Release 3.3.0

1.10.5 CSV to NestedText

This example implements a command-line utility that converts a CSV file to NestedText. It demonstrates the use of the
converters argument to dumps(), which is used to cull empty dictionary fields.

#!/usr/bin/env python3
"""
Read a CSV file and convert it to NestedText.

usage:
csv-to-nestedtext [options] [<filename>]

options:
-n, --names first row contains column names
-c, --cull remove empty fields (only for --names)
-f, --force force overwrite of output file
-i <n>, --indent <n> number of spaces per indent [default: 4]

If <filename> is not given, csv input is taken from stdin and NestedText output
is written to stdout.

If --names is specified, then the first line is assumed to hold the column/field
names with the remaining lines containing the data. In this case the output is
a list of dictionaries. Otherwise every line contains data and that data is
output as a list of lists.
"""

from docopt import docopt
from inform import cull, done, fatal, full_stop, os_error, warn
from pathlib import Path
import csv
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:

indent = int(cmdline['--indent'])
except Exception:

warn('expected positive integer for indent.', culprit=cmdline['--indent'])
indent = 4

strip dictionaries of empty fields if requested
converters = {dict: cull} if cmdline['--cull'] else {}

try:
read CSV content; from file or from stdin
if input_filename:

input_path = Path(input_filename)
csv_content = input_path.read_text(encoding='utf-8')

else:
(continues on next page)

1.10. Examples 35

NestedText, Release 3.3.0

(continued from previous page)

csv_content = sys.stdin.read()
if cmdline['--names']:

data = csv.DictReader(csv_content.splitlines())
else:

data = csv.reader(csv_content.splitlines())

convert to NestedText
nt_content = nt.dumps(data, indent=indent, converters=converters) + "\n"

output NestedText content; to file or to stdout
if input_filename:

output_path = input_path.with_suffix('.nt')
if output_path.exists():

if not cmdline['--force']:
fatal('file exists, use -f to force over-write.', culprit=output_path)

output_path.write_text(nt_content, encoding='utf-8')
else:

sys.stdout.write(nt_content)

except OSError as e:
fatal(os_error(e))

except nt.NestedTextError as e:
e.terminate()

except csv.Error as e:
fatal(full_stop(e), culprit=(input_filename, data.line_num))

except KeyboardInterrupt:
done()

1.10.6 PyTest

This example highlights a PyTest package parametrize_from_file that allows you to neatly separate your test code from
your test cases; the test cases being held in a NestedText file. Since test cases often contain code snippets, the ability of
NestedText to hold arbitrary strings without the need for quoting or escaping results in very clean and simple test case
specifications. Also, use of the eval function in the test code allows the fields in the test cases to be literal Python code.

The test cases:

test_expr.nt
test_substitution:
-
given: first second
search: ^\s*(\w+)\s*(\w+)\s*$
replace: \2 \1
expected: second first

-
given: 4 * 7
search: ^\s*(\d+)\s*([-+*/])\s*(\d+)\s*$
replace: \1 \3 \2
expected: 4 7 *

test_expression:
(continues on next page)

36 Chapter 1. Contributing

https://docs.pytest.org
https://parametrize-from-file.readthedocs.io

NestedText, Release 3.3.0

(continued from previous page)

-
given: 1 + 2
expected: 3

-
given: "1" + "2"
expected: "12"

-
given: pathlib.Path("/") / "tmp"
expected: pathlib.Path("/tmp")

And the corresponding test code:

test_misc.py
import parametrize_from_file
import re
import pathlib

@parametrize_from_file
def test_substitution(given, search, replace, expected):

assert re.sub(search, replace, given) == expected

@parametrize_from_file
def test_expression(given, expected):

assert eval(given) == eval(expected)

1.10.7 Pretty Printing

Besides being a readable file format, NestedText makes a reasonable display format for structured data. This example
further simplifies the output by stripping leading multiline string tags.

>>> import nestedtext as nt
>>> import re
>>>
>>> def pp(data):
... try:
... text = nt.dumps(data, default=repr)
... print(re.sub(r'^(\s*)[>:]\s?(.*)$', r'\1\2', text, flags=re.M))
... except nt.NestedTextError as e:
... e.report()

>>> addresses = nt.load('examples/address.nt')

>>> pp(addresses['Katheryn McDaniel'])
position: president
address:

138 Almond Street
Topeka, Kansas 20697

phone:
cell: 1-210-555-5297
home: 1-210-555-8470

(continues on next page)

1.10. Examples 37

NestedText, Release 3.3.0

(continued from previous page)

email: KateMcD@aol.com
additional roles:

- board member

1.10.8 Normalizing keys

With data files created by non-programmers it is often desirable to allow a certain amount of flexibility in the keys.
For example, you may wish to ignore case and be tolerant of extra spacing. However, the end applications often needs
the keys to be specific values. It is possible to normalize the keys using a schema, but this can interfere with error
reporting. Imagine there is an error in the value associated with a set of keys, if the keys have been changed by the
schema the keymap can no longer be used to convert the keys into a line number for an error message. NestedText
provides the normalize_key argument to load() and loads() to address this issue. It allows you to pass in a function
that normalizes the keys before the keymap is created, releasing the schema from that task.

The following contact look-up program demonstrates both the normalization of keys and the associated error reporting.
In this case, the first level of keys contains the names of the contacts and should not be normalized. Keys at all other
levels are considered keywords and so should be normalized.

#!/usr/bin/env python3
"""
Display Contact Information

Usage:
contact <name>

"""

from docopt import docopt
from inform import codicil, display, error, full_stop, indent, os_error, terminate
import nestedtext as nt
from voluptuous import Schema, Required, Any, MultipleInvalid
import re

contacts_file = "address.nt"

def normalize_key(key, parent_keys):
if len(parent_keys) == 0:

return key
return ' '.join(key.lower().split())

def render_contact(data):
text = nt.dumps(data, default=repr)
return (re.sub(r'^(\s*)[>:]\s?(.*)$', r'\1\2', text, flags=re.M))

cmdline = docopt(__doc__)
name = cmdline['<name>']

try:
define structure of contacts database
contacts_schema = Schema({

str: {
'position': str,

(continues on next page)

38 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

'address': str,
'phone': Required(Any({str:str},str)),
'email': Required(Any({str:str},str)),
'additional roles': Any(list,str),

}
})

read contacts database
contacts = contacts_schema(

nt.load(
contacts_file,
top = 'dict',
normalize_key = normalize_key,
keymap = (keymap:={})

)
)

display requested contact
for fullname, contact_info in contacts.items():

if name in fullname.lower():
display(fullname)
display(indent(render_contact(contact_info)))

except nt.NestedTextError as e:
e.report()

except MultipleInvalid as e:
for err in e.errors:

kind = 'key' if 'key' in err.msg else 'value'
keys = tuple(err.path)
codicil = keymap[keys].as_line(kind) if keys in keymap else None
error(

full_stop(err.msg),
culprit = (contacts_file, nt.join_keys(keys, keymap=keymap)),
codicil = codicil

)
except OSError as e:

error(os_error(e))
terminate()

This program takes a name as a command line argument and prints out the corresponding address. It uses the pretty
print idea from the previous section to render the contact information. Voluptuous checks the validity of the contacts
database, which is shown next. Notice the variability in the keys given in Fumiko’s entry:

Contact information for our officers

Katheryn McDaniel:
position: president
address:

> 138 Almond Street
> Topeka, Kansas 20697

phone:
cell: 1-210-555-5297

(continues on next page)

1.10. Examples 39

NestedText, Release 3.3.0

(continued from previous page)

home: 1-210-555-8470
email: KateMcD@aol.com
additional roles:

- board member

Margaret Hodge:
position: vice president
address:

> 2586 Marigold Lane
> Topeka, Kansas 20682

phone: 1-470-555-0398
email: margaret.hodge@ku.edu
additional roles:

- new membership task force
- accounting task force

Fumiko Purvis:
Position: treasurer

Fumiko's term is ending at the end of the year.
She will be replaced by Merrill Eldridge.

Address:
> 3636 Buffalo Ave
> Topeka, Kansas 20692

Phone: 1-268-555-0280
EMail: fumiko.purvis@hotmail.com
Additional Roles:

- accounting task force

Now, requesting Fumiko’s contact information gives:

Fumiko Purvis
position: treasurer
address:

3636 Buffalo Ave
Topeka, Kansas 20692

phone: 1-268-555-0280
email: fumiko.purvis@hotmail.com
additional roles:

- accounting task force

Notice that other than Fumiko’s name, the displayed keys are all normalized.

1.10.9 References

This example illustrates how one can implement references or macros in NestedText. A reference allows you to define
some content once and insert that content multiple places in the document. This example also demonstrates a slightly
different way to implement validation and conversion on a per field basis with voluptuous. Finally, it includes key
normalization, which allows the keys to be case insensitive and contain white space even though the program that uses
the data prefers the keys to be lower case identifiers. The normalize_key function passed to load() is used to transform
the keys to the desired form.

PostMortem is a program that generates a packet of information that is securely shared with your dependents in case of
your death. Only the settings processing part of the package is shown here. Here is a configuration file that Odin might

40 Chapter 1. Contributing

https://github.com/alecthomas/voluptuous
https://github.com/kenkundert/postmortem

NestedText, Release 3.3.0

use to generate packets for his wife and kids:

my GPG ids: odin@norse-gods.com
sign with: @ my gpg ids
name template: {name}-{now:YYMMDD}
estate docs:

- ~/home/estate/trust.pdf
- ~/home/estate/will.pdf
- ~/home/estate/deed-valhalla.pdf

recipients:
Frigg:

email: frigg@norse-gods.com
category: wife
attach: @ estate docs
networth: odin

Thor:
email: thor@norse-gods.com
category: kids
attach: @ estate docs

Loki:
email: loki@norse-gods.com
category: kids
attach: @ estate docs

Notice that estate docs is defined at the top level. It is not a PostMortem setting; it simply defines a value that will be
interpolated into a setting later. The interpolation is done by specifying @ along with the name of the reference as a
value. So for example, in recipients attach is specified as @ estate docs. This causes the list of estate documents to
be used as attachments. The same thing is done in sign with, which interpolates my gpg ids.

Here is the code for validating and transforming the PostMortem settings:

#!/usr/bin/env python3

import nestedtext as nt
from pathlib import Path
from voluptuous import (

Schema, Invalid, MultipleInvalid, Extra, Required, REMOVE_EXTRA
)
from pprint import pprint

Settings schema
First define some functions that are used for validation and coercion
def to_str(arg):

if isinstance(arg, str):
return arg

raise Invalid('expected text')

def to_ident(arg):
arg = to_str(arg)
if arg.isidentifier():

return arg
raise Invalid('expected simple identifier')

(continues on next page)

1.10. Examples 41

NestedText, Release 3.3.0

(continued from previous page)

def to_list(arg):
if isinstance(arg, str):

return arg.split()
if isinstance(arg, dict):

raise Invalid('expected list')
return arg

def to_paths(arg):
return [Path(p).expanduser() for p in to_list(arg)]

def to_email(arg):
user, _, host = arg.partition('@')
if '.' in host and '@' not in host:

return arg
raise Invalid('expected email address')

def to_emails(arg):
return [to_email(e) for e in to_list(arg)]

def to_gpg_id(arg):
try:

return to_email(arg) # gpg ID may be an email address
except Invalid:

try:
int(arg, base=16) # if not an email, it must be a hex key
assert len(arg) >= 8 # at least 8 characters long
return arg

except (ValueError, AssertionError):
raise Invalid('expected GPG id')

def to_gpg_ids(arg):
return [to_gpg_id(i) for i in to_list(arg)]

def to_snake_case(key):
return '_'.join(key.strip().lower().split())

define the schema for the settings file
schema = Schema(

{
Required('my_gpg_ids'): to_gpg_ids,
'sign with': to_gpg_id,
'avendesora_gpg_passphrase_account': to_str,
'avendesora_gpg_passphrase_field': to_str,
'name template': to_str,
Required('recipients'): {

Extra: {
Required('category'): to_ident,
Required('email'): to_emails,
'gpg_id': to_gpg_id,
'attach': to_paths,
'networth': to_ident,

}

(continues on next page)

42 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

},
},
extra = REMOVE_EXTRA

)

this function implements references
def expand_settings(value):

allows macro values to be defined as a top-level setting.
allows macro reference to be found anywhere.
if isinstance(value, str):

value = value.strip()
if value[:1] == '@':

value = settings[to_snake_case(value[1:])]
return value

if isinstance(value, dict):
return {k:expand_settings(v) for k, v in value.items()}

if isinstance(value, list):
return [expand_settings(v) for v in value]

raise NotImplementedError(value)

def normalize_key(key, parent_keys):
if parent_keys != ('recipients',):

normalize all keys except the recipient names
return to_snake_case(key)

return key

try:
Read settings
config_filepath = Path('postmortem.nt')
if config_filepath.exists():

load from file
settings = nt.load(

config_filepath,
keymap = (keymap:={}),
normalize_key = normalize_key

)

expand references
settings = expand_settings(settings)

check settings and transform to desired types
settings = schema(settings)

show the resulting settings
pprint(settings)

except nt.NestedTextError as e:
e.report()

except MultipleInvalid as e:
for err in e.errors:

kind = 'key' if 'key' in err.msg else 'value'
(continues on next page)

1.10. Examples 43

NestedText, Release 3.3.0

(continued from previous page)

culprit = nt.join_keys(err.path, keymap=keymap)
print(f"ERROR: {config_filepath!s}: {culprit}: {err.msg}.")
try:

print(keymap[tuple(err.path)].as_line(kind))
except KeyError:

pass
except OSError as e:

print(f"ERROR: {config_filepath!s}: {e!s}")

This code uses expand_settings to implement references, and it uses the Voluptuous schema to clean and validate the
settings and convert them to convenient forms. For example, the user could specify attach as a string or a list, and
the members could use a leading ~ to signify a home directory. Applying to_paths in the schema converts whatever is
specified to a list and converts each member to a pathlib path with the ~ properly expanded.

Notice that the schema is defined in a different manner that the above examples. In those, you simply state which type
you are expecting for the value and you use the Coerce function to indicate that the value should be cast to that type if
needed. In this example, simple functions are passed in that perform validation and coercion as needed. This is a more
flexible approach and allows better control of the error messages.

Here are the processed settings:

{'my_gpg_ids': ['odin@norse-gods.com'],
'recipients': {'Frigg': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),

PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'wife',
'email': ['frigg@norse-gods.com'],
'networth': 'odin'},

'Loki': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'kids',
'email': ['loki@norse-gods.com']},

'Thor': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
PosixPath('/home/ken/home/estate/will.pdf'),
PosixPath('/home/ken/home/estate/deed-valhalla.pdf

→˓')],
'category': 'kids',
'email': ['thor@norse-gods.com']}}}

1.11 Common mistakes

When load() or loads() complains of errors it is important to look both at the line fingered by the error message
and the one above it. The line that is the target of the error message might by an otherwise valid NestedText line if it
were not for the line above it. For example, consider the following example:

Example:

>>> import nestedtext as nt

(continues on next page)

44 Chapter 1. Contributing

https://docs.python.org/3/library/pathlib.html

NestedText, Release 3.3.0

(continued from previous page)

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address: Home
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content)
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation.
An indent may only follow a dictionary or list item that does not
already have a value.

4 address: Home
5 > 3636 Buffalo Ave

Notice that the complaint is about line 5, but problem stems from line 4 where Home gave a value to address. With
a value specified for address, any further indentation on line 5 indicates a second value is being specified for address,
which is illegal.

A more subtle version of this same error follows:

Example:

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address:␣␣
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content.replace('␣␣', ' '))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation.
An indent may only follow a dictionary or list item that does not
already have a value, which in this case consists only of whitespace.

4 address:
5 > 3636 Buffalo Ave

Notice the ␣␣ that follows address in content. These are replaced by 2 spaces before content is processed by loads.
Thus, in this case there is an extra space at the end of line 4. Anything beyond the: :␣ is considered the value for
address, and in this case that is the single extra space specified at the end of the line. This extra space is taken to be the
value of address, making the multiline string in lines 5 and 6 a value too many.

This mistake is easier to see in advance if you configure your editor to show trailing whitespace. To do so in Vim, add:

1.11. Common mistakes 45

NestedText, Release 3.3.0

set listchars=trail:␣

to your ~/.vimrc file.

1.12 Python API

1.12.1 dumps

nestedtext.dumps(obj, *, width=0, inline_level=0, sort_keys=False, indent=4, converters=None, default=None)
Recursively convert object to NestedText string.

Parameters

• obj – The object to convert to NestedText.

• width (int) – Enables inline lists and dictionaries if greater than zero and if resulting line
would be less than or equal to given width.

• inline_level (int) – Recursion depth must be equal to this value or greater to be eligible
for inlining.

• sort_keys (bool or func) – Dictionary items are sorted by their key if sort_keys is true.
If a function is passed in, it is used as the key function.

• indent (int) – The number of spaces to use to represent a single level of indentation. Must
be one or greater.

• converters (dict) – A dictionary where the keys are types and the values are converter
functions (functions that take an object and return it in a form that can be processed by
NestedText). If a value is False, an unsupported type error is raised.

An object may provide its own converter by defining the __nestedtext_converter__
attribute. It may be False, or it may be a method that converts the object to a supported data
type for NestedText. A matching converter specified in the converters argument dominates
over this attribute.

• default (func or 'strict') – The default converter. Use to convert otherwise unrecog-
nized objects to a form that can be processed. If not provided an error will be raised for
unsupported data types. Typical values are repr or str. If ‘strict’ is specified then only dic-
tionaries, lists, strings, and those types that have converters are allowed. If default is not
specified then a broader collection of value types are supported, including None, bool, int,
float, and list- and dict-like objects. In this case Booleans are rendered as ‘True’ and ‘False’
and None is rendered as an empty string. If default is a function, it acts as the default con-
verter. If it raises a TypeError, the value is reported as an unsupported type.

• _level (int) – The number of indentation levels. When dumps is invoked recursively this
is used to increment the level and so the indent. This argument is use internally and should
not be specified by the user.

Returns The NestedText content without a trailing newline. NestedText files should end with a new-
line, but unlike dump(), this function does not output that newline. You will need to explicitly
add that newline when writing the output dumps() to a file.

Raises NestedTextError – if there is a problem in the input data.

46 Chapter 1. Contributing

NestedText, Release 3.3.0

Examples

>>> import nestedtext as nt

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
name: Kristel Templeton
sex: female
age: 74

The NestedText format only supports dictionaries, lists, and strings. By default, dumps is configured to be rather
forgiving, so it will render many of the base Python data types, such as None, bool, int, float and list-like types
such as tuple and set by converting them to the types supported by the format. This implies that a round trip
through dumps and loads could result in the types of values being transformed. You can restrict dumps to only
supporting the native types of NestedText by passing default=’strict’ to dumps. Doing so means that values that
are not dictionaries, lists, or strings generate exceptions.

>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
key: 42
value: 3.1415926
valid: True

>>> try:
... print(nt.dumps(data, default='strict'))
... except nt.NestedTextError as e:
... print(str(e))
key: unsupported type (int).

Alternatively, you can specify a function to default, which is used to convert values to recognized types. It is
used if no suitable converter is available. Typical values are str and repr.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __repr__(self):
... return f'Color({self.color!r})'
... def __str__(self):
... return self.color

>>> data['house'] = Color('red')
(continues on next page)

1.12. Python API 47

NestedText, Release 3.3.0

(continued from previous page)

>>> print(nt.dumps(data, default=repr))
key: 42
value: 3.1415926
valid: True
house: Color('red')

>>> print(nt.dumps(data, default=str))
key: 42
value: 3.1415926
valid: True
house: red

If Color is consistently used with NestedText, you can include the converter in Color itself.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __nestedtext_converter__(self):
... return self.color.title()

>>> data['house'] = Color('red')
>>> print(nt.dumps(data))
key: 42
value: 3.1415926
valid: True
house: Red

You can also specify a dictionary of converters. The dictionary maps the object type to a converter function.

>>> class Info:
... def __init__(self, **kwargs):
... self.__dict__ = kwargs

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: lambda f: f'{f:0.3}',
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> data['attributes'] = Info(readable=True, writable=False)

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
key: 0x2a
value: 3.14
valid: yes
house: red
attributes:

(continues on next page)

48 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

readable: yes
writable: no

The above example shows that Color in the converters argument dominates over the
__nestedtest__converter__ class.

If the dictionary maps a type to None, then the default behavior is used for that type. If it maps to False, then an
exception is raised.

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: False,
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
value: unsupported type (float).

converters need not actually change the type of a value, it may simply transform the value. In the following
example, converters is used to transform dictionaries by removing empty dictionary fields. It is also converts
dates and physical quantities to strings.

>>> import arrow
>>> from inform import cull
>>> import quantiphy

>>> class Dollars(quantiphy.Quantity):
... units = '$'
... form = 'fixed'
... prec = 2
... strip_zeros = False
... show_commas = True

>>> converters = {
... dict: cull,
... arrow.Arrow: lambda d: d.format('D MMMM YYYY'),
... quantiphy.Quantity: lambda q: str(q)
... }

>>> transaction = dict(
... date = arrow.get('2013-05-07T22:19:11.363410-07:00'),
... description = "Incoming wire from Publisher's Clearing House",
... debit = 0,
... credit = Dollars(12345.67)
...)

>>> print(nt.dumps(transaction, converters=converters))
date: 7 May 2013

(continues on next page)

1.12. Python API 49

NestedText, Release 3.3.0

(continued from previous page)

description: Incoming wire from Publisher's Clearing House
credit: $12,345.67

Both default and converters may be used together. converters has priority over the built-in types and default.
When a function is specified as default, it is always applied as a last resort.

1.12.2 dump

nestedtext.dump(obj, dest, **kwargs)
Write the NestedText representation of the given object to the given file.

Parameters

• obj – The object to convert to NestedText.

• dest (str, os.PathLike, io.TextIOBase) – The file to write the NestedText content
to. The file can be specified either as a path (e.g. a string or a pathlib.Path) or as a text IO
instance (e.g. an open file). If a path is given, the will be opened, written, and closed. If an
IO object is given, it must have been opened in a mode that allows writing (e.g. open(path,
'w')), if applicable. It will be written and not closed.

The name used for the file is arbitrary but it is tradition to use a .nt suffix. If you also wish
to further distinguish the file type by giving the schema, it is recommended that you use two
suffixes, with the suffix that specifies the schema given first and .nt given last. For example:
flicker.sig.nt.

• kwargs – See dumps() for optional arguments.

Returns The NestedText content with a trailing newline. This differs from dumps(), which does not
add the trailing newline.

Raises

• NestedTextError – if there is a problem in the input data.

• OSError – if there is a problem opening the file.

Examples

This example writes to a pointer to an open file.

>>> import nestedtext as nt
>>> from inform import fatal, os_error

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... with open('data.nt', 'w', encoding='utf-8') as f:
... nt.dump(data, f)
... except nt.NestedTextError as e:
... e.terminate()

(continues on next page)

50 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

... except OSError as e:

... fatal(os_error(e))

This example writes to a file specified by file name. In general, the file name and extension are arbitrary. However,
by convention a ‘.nt’ suffix is generally used for NestedText files.

>>> try:
... nt.dump(data, 'data.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

1.12.3 loads

nestedtext.loads(content, top='dict', *, source=None, on_dup=None, keymap=None, normalize_key=None)
Loads NestedText from string.

Parameters

• content (str) – String that contains encoded data.

• top (str) – Top-level data type. The NestedText format allows for a dictionary, a list, or a
string as the top-level data container. By specifying top as ‘dict’, ‘list’, or ‘str’ you constrain
both the type of top-level container and the return value of this function. By specifying ‘any’
you enable support for all three data types, with the type of the returned value matching that
of top-level container in content. As a short-hand, you may specify the dict, list, str, and any
built-ins rather than specifying top with a string.

• source (str or Path) – If given, this string is attached to any errormessages as the culprit.
It is otherwise unused. Is often the name of the file that originally contained the NestedText
content.

• on_dup (str or func) – Indicates how duplicate keys in dictionaries should be handled.
By default they raise exceptions. Specifying ‘ignore’ causes them to be ignored (first wins).
Specifying ‘replace’ results in them replacing earlier items (last wins). By specifying a func-
tion, the keys can be de-duplicated. This call-back function returns a new key and takes four
arguments:

1. The new key (duplicates an existing key).

2. The new value.

3. The entire dictionary as it is at the moment the duplicate key is found. You should not
change it.

4. The state; a dictionary that is created as loads is called and deleted as it returns. Values
placed in this dictionary are retained between multiple calls to this call back function.

This function should return a new key that is unique (not found in the dictionary).

It may be that the number of arguments will grow in the future. To remain forward compat-
ible it is recommended that add *args to the end of your argument list to capture any new
arguments as shown in the example below.

1.12. Python API 51

NestedText, Release 3.3.0

Be aware that de-duplication does not play nicely with keymaps as a keymap cannot distin-
guish between the duplicate key-sets. If an error occurs in the value of one of the duplicates,
it may be reported as occurring in one of the others.

• keymap (dict) – Specify an empty dictionary or nothing at all for the value of this argu-
ment. If you give an empty dictionary it will be filled with location information for the
values that are returned. Upon return the dictionary maps a tuple containing the keys for the
value of interest to the location of that value in the NestedText source document. The loca-
tion is contained in a Location object. You can access the line and column number using
the Location.as_tuple() method, and the line that contains the value annotated with its
location using the Location.as_line() method.

• normalize_key (func) – A function that takes two arguments; the original key for a value
and the tuple of normalized keys for its parent values. It then transforms the given key into
the desired normalized form. Only called on dictionary keys, so the key will always be a
string.

Returns The extracted data. The type of the return value is specified by the top argument. If top
is ‘any’, then the return value will match that of top-level data container in the input content. If
content is empty, an empty data value of the type specified by top is returned. If top is ‘any’ None
is returned.

Raises NestedTextError – if there is a problem in the NextedText content.

Examples

A NestedText document is specified to loads in the form of a string:

>>> import nestedtext as nt

>>> contents = """
... name: Kristel Templeton
... sex: female
... age: 74
... """

>>> try:
... data = nt.loads(contents, 'dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'name': 'Kristel Templeton', 'sex': 'female', 'age': '74'}

loads() takes an optional argument, source. If specified, it is added to any error messages. It is often used to
designate the source of contents. For example, if contents were read from a file, source would be the file name.
Here is a typical example of reading NestedText from a file:

>>> filename = 'examples/duplicate-keys.nt'
>>> try:
... with open(filename, encoding='utf-8') as f:
... addresses = nt.loads(f.read(), source=filename)
... except nt.NestedTextError as e:
... print(e.render())
... print(*e.get_codicil(), sep="\n")

(continues on next page)

52 Chapter 1. Contributing

NestedText, Release 3.3.0

(continued from previous page)

examples/duplicate-keys.nt, 5: duplicate key: name.
4 name:
5 name:

Notice in the above example the encoding is explicitly specified as ‘utf-8’. NestedText files should always be read
and written using utf-8 encoding.

The following examples demonstrate the various ways of handling duplicate keys:

>>> content = """
... key: value 1
... key: value 2
... key: value 3
... name: value 4
... name: value 5
... """

>>> print(nt.loads(content))
Traceback (most recent call last):
...
nestedtext.NestedTextError: 3: duplicate key: key.

>>> print(nt.loads(content, on_dup='ignore'))
{'key': 'value 1', 'name': 'value 4'}

>>> print(nt.loads(content, on_dup='replace'))
{'key': 'value 3', 'name': 'value 5'}

>>> def de_dup(key, value, data, state, *args):
... if key not in state:
... state[key] = 1
... state[key] += 1
... return f"{key}#{state[key]}"

>>> print(nt.loads(content, on_dup=de_dup))
{'key': 'value 1', 'key#2': 'value 2', 'key#3': 'value 3', 'name': 'value 4', 'name
→˓#2': 'value 5'}

1.12.4 load

nestedtext.load(f=None, top='dict', *, on_dup=None, keymap=None, normalize_key=None)
Loads NestedText from file or stream.

Is the same as loads() except the NextedText is accessed by reading a file rather than directly from a string. It
does not keep the full contents of the file in memory and so is more memory efficient with large files.

Parameters

• f (str, os.PathLike, io.TextIOBase, collections.abc.Iterator) – The file to
read the NestedText content from. This can be specified either as a path (e.g. a string or a
pathlib.Path), as a text IO object (e.g. an open file), or as an iterator. If a path is given, the
file will be opened, read, and closed. If an IO object is given, it will be read and not closed;

1.12. Python API 53

NestedText, Release 3.3.0

utf-8 encoding should be used.. If an iterator is given, it should generate full lines in the
same manner that iterating on a file descriptor would.

• kwargs – See loads() for optional arguments.

Returns The extracted data. See loads() description of the return value.

Raises

• NestedTextError – if there is a problem in the NextedText content.

• OSError – if there is a problem opening the file.

Examples

Load from a path specified as a string:

>>> import nestedtext as nt
>>> print(open('examples/groceries.nt').read())
groceries:
- Bread
- Peanut butter
- Jam

>>> nt.load('examples/groceries.nt')
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from a pathlib.Path:

>>> from pathlib import Path
>>> nt.load(Path('examples/groceries.nt'))
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from an open file object:

>>> with open('examples/groceries.nt') as f:
... nt.load(f)
...
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

1.12.5 Location

class nestedtext.Location(line=None, col=None, key_line=None, key_col=None)
Holds information about the location of a token.

Returned from load() and loads() as the values in a keymap. Objects of this class holds the line and column
numbers of the key and value tokens.

as_line(kind='value')
Returns a string containing two lines that identify the token in context. The first line contains the line
number and text of the line that contains the token. The second line contains a pointer to the token.

Parameters kind (str) – Specify either ‘key’ or ‘value’ depending on which token is desired.

54 Chapter 1. Contributing

NestedText, Release 3.3.0

as_tuple(kind='value')
Returns the location of either the value or the key token as a tuple that contains the line number and the
column number. The line and column numbers are 0 based.

Parameters kind (str) – Specify either ‘key’ or ‘value’ depending on which token is desired.

1.12.6 Utilities

Extras that are useful when using NestedText.

nestedtext.get_value_from_keys(obj, keys)
Get value from keys.

Parameters

• obj – Your data set as returned by load() or loads().

• keys – A tuple of keys taken from a keymap.

Returns The value that corresponds to a tuple of keys from a keymap.

nestedtext.get_lines_from_keys(obj, keys, keymap, kind='value', sep=None)
Get line numbers from normalized keys.

This function returns the line numbers of the key or value selected by keys. It is used when reporting an error in
a value that is possibly a multiline string. If the location contained in a keymap were used the user would only
see the line number of the first line, which may confuse some users into believing the error is actually contained
in the first line. Using this function gives both the starting and ending line number so the user focuses on the
whole string and not just the first line.

If sep is given, either one line number or both the beginning and ending line numbers are given, joined with the
separator. In this case the line numbers start from line 1.

If sep is not given, the line numbers are returned as a tuple containing a pair of integers that is tailored to be
suitable to be arguments to the Python slice function (see example). The beginning line number and 1 plus the
ending line number is returned as a tuple. In this case the line numbers start at 0.

If the value is requested and it is a composite (a dictionary or list), the line on which it ends cannot be easily
determined, so the value is treated as if it consists of a single line. This is considered tolerable as it is expected
that this function is primarily used to return the line number of leaf values, which are always strings.

Parameters

• obj – Your data set as returned by load() or loads().

• keys – The collection of keys that identify a value in the dataset.

• keymap – The keymap returned from load() or loads().

• kind (str) – Specify either ‘key’ or ‘value’ depending on which token is desired.

• sep – The separator string. If given a string is returned and sep is inserted between two line
numbers. Otherwise a tuple is returned.

1.12. Python API 55

NestedText, Release 3.3.0

Example

>>> import nestedtext as nt

>>> doc = '''
... key:
... > this is line 1
... > this is line 2
... > this is line 3
... '''

>>> data = nt.loads(doc, keymap=(keymap:={}))
>>> keys = ("key",)
>>> lines = nt.get_lines_from_keys(data, keys, keymap, sep="-")
>>> text = doc.splitlines()
>>> print(
... f"Lines {lines}:",
... *text[slice(*nt.get_lines_from_keys(data, keys, keymap))],
... sep="\n"
...)
Lines 3-5:

> this is line 1
> this is line 2
> this is line 3

nestedtext.get_original_keys(keys, keymap, strict=False)
Get original keys from normalized keys.

Parameters

• keys – The collection of keys that identify a value in the dataset.

• keymap – The keymap returned from load() or loads().

• strict – If true, a KeyError will be raised if the given keys are not found in the keymap.
Otherwise, the given key will be returned rather than the original key. This is helpful when
reporting errors on required keys that do not exist in the data set. Since they are not in the
dataset, no original key is available.

Returns A tuple containing the original keys names.

nestedtext.join_keys(keys, sep=', ', keymap=None)
Joins the keys into a string.

Parameters

• keys – A tuple of keys.

• sep – The separator string. It is inserted between each key during the join.

• keymap – The keymap returned from load() or loads(). It is optional. If given the given
keys are converted to the original keys before the joining.

Returns A string containing the joined keys.

56 Chapter 1. Contributing

NestedText, Release 3.3.0

1.12.7 NestedTextError

exception nestedtext.NestedTextError(*args, **kwargs)
The load and dump functions all raise NestedTextError when they discover an error. NestedTextError subclasses
both the Python ValueError and the Error exception from Inform. You can find more documentation on what
you can do with this exception in the Inform documentation.

All exceptions provide the following attributes:

Parameters

• problematic (The exception arguments. A tuple that usually contains
the) –

• value. –

template: The possibly parameterized text used for the error message.

Exceptions raised by the loads() or load() functions provide the following additional attributes:

source: The source of the NestedText content, if given. This is often a filename.

line: The text of the line of NestedText content where the problem was found.

prev_line: The text of the meaningful line immediately before where the problem was found. This would not
be a comment or blank line.

lineno: The number of the line where the problemwas found. Line numbers are zero based except when included
in messages to the end user.

colno: The number of the character where the problem was found on line. Column numbers are zero based.

codicil: The line that contains the error decorated with the location of the error.

The exception culprit is the tuple that indicates where the error was found. With exceptions from loads() or
load(), the culprit consists of the source name, if available, and the line number. With exceptions from dumps()
or dump(), the culprit consists of the keys that lead to the problematic value.

As with most exceptions, you can simply cast it to a string to get a reasonable error message.

>>> from textwrap import dedent
>>> import nestedtext as nt

>>> content = dedent("""
... name1: value1
... name1: value2
... name3: value3
... """).strip()

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(str(e))
2: duplicate key: name1.

You can also use the report method to print the message directly. This is appropriate if you are using inform for
your messaging as it follows inform’s conventions:

1.12. Python API 57

https://inform.readthedocs.io/en/stable/api.html#exceptions

NestedText, Release 3.3.0

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.report()
error: 2: duplicate key: name1.

name1: value2

The terminate method prints the message directly and exits:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.terminate()
error: 2: duplicate key: name1.

name1: value2

With exceptions generated from load() or loads() you may see extra lines at the end of the message that show
the problematic lines if you have the exception report itself as above. Those extra lines are referred to as the
codicil and they can be very helpful in illustrating the actual problem. You do not get them if you simply cast
the exception to a string, but you can access them using NestedTextError.get_codicil(). The codicil or
codicils are returned as a tuple. You should join them with newlines before printing them.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(*e.get_codicil(), sep="\n")
duplicate key: name1.

1 name1: value1
2 name1: value2

Note the and characters in the codicil. They delimit the extent of the text on each line and help you see trouble-
some leading or trailing white space.

Exceptions produced by NestedText contain a template attribute that contains the basic text of the message. You
can change this message by overriding the attribute using the template argument when using report, terminate,
or render. render is like casting the exception to a string except that allows for the passing of arguments. For
example, to convert a particular message to Spanish, you could use something like the following.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... template = None
... if e.template == 'duplicate key: {}.':
... template = 'llave duplicada: {}.'
... print(e.render(template=template))
2: llave duplicada: name1.

get_message(template=None)
Get exception message.

58 Chapter 1. Contributing

NestedText, Release 3.3.0

Parameters template (str) – This argument is treated as a format string and is passed both the
unnamed and named arguments. The resulting string is treated as the message and returned.

If not specified, the template keyword argument passed to the exception is used. If there was
no template argument, then the positional arguments of the exception are joined using sep and
that is returned.

Returned: The formatted message without the culprits.

get_culprit(culprit=None)
Get the culprits.

Culprits are extra pieces of information attached to an error that help to identify the source of the error. For
example, file name and line number where the error was found are often attached as culprits.

Return the culprit as a tuple. If a culprit is specified as an argument, it is appended to the exception’s culprit
without modifying it.

Parameters culprit (string, number or tuple of strings and numbers) – A cul-
prit or collection of culprits that is appended to the return value without modifying the cached
culprit.

Returns The culprit argument is prepended to the exception’s culprit and the combination is
returned. The return value is always in the form of a tuple even if there is only one component.

get_codicil(codicil=None)
Get the codicils.

A codicil is extra text attached to an error that can clarify the error message or to give extra context.

Return the codicil as a tuple. If a codicil is specified as an argument, it is appended to the exception’s codicil
without modifying it.

Parameters codicil (string or tuple of strings) – A codicil or collection of codicils
that is appended to the return value without modifying the cached codicil.

Returns The codicil argument is appended to the exception’s codicil and the combination is re-
turned. The return value is always in the form of a tuple even if there is only one component.

report(**new_kwargs)
Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

Parameters **kwargs – report() takes any of the normal keyword arguments normally allowed
on an informant (culprit, template, etc.). Any keyword argument specified here overrides
those that were specified when the exception was first raised.

terminate(**new_kwargs)
Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

Parameters **kwargs – report() takes any of the normal keyword arguments normally allowed
on an informant (culprit, template, etc.). Any keyword argument specified here overrides
those that were specified when the exception was first raised.

1.12. Python API 59

NestedText, Release 3.3.0

reraise(**new_kwargs)
Re-raise the exception.

render(template=None)
Convert exception to a string for use in an error message.

Parameters template (str) – This argument is treated as a format string and is passed both the
unnamed and named arguments. The resulting string is treated as the message and returned.

If not specified, the template keyword argument passed to the exception is used. If there was
no template argument, then the positional arguments of the exception are joined using sep and
that is returned.

Returned: The formatted message with any culprits.

1.13 Releases

This page documents the changes in the Python implementation of NestedText. Changes to the NestedText language are
shown in Language changes.

1.13.1 Latest development version

Version: 3.3.0
Released: 2022-06-07

1.13.2 v3.3 (2022-06-07)

• add normalize_key argument to load() and loads().

• added utility functions for operating on keys and keymaps: - get_value_from_keys() -
get_lines_from_keys() - get_original_keys() - join_keys()

• None passed as key is now converted to an empty string rather than “None”.

1.13.3 v3.2 (2022-01-17)

• add circular reference detection and reporting.

1.13.4 v3.1 (2021-07-23)

• change error reporting for dumps() and dump() functions; culprit is now the keys rather than the value.

60 Chapter 1. Contributing

NestedText, Release 3.3.0

1.13.5 v3.0 (2021-07-17)

• Deprecate trailing commas in inline lists and dictionaries.

• Adds keymap argument to load() and loads().

• Adds inline_level argument to dump() and dumps().

• Implement on_dup argument to load() and loads() in inline dictionaries.

• Apply convert and default arguments of dump() and dumps() to dictionary keys.

Warning: Be aware that aspects of this version are not backward compatible. Specifically, trailing commas are
no longer supported in inline dictionaries and lists. In addition, [] now represents a list that contains an empty
string, whereas previously it represented an empty list.

1.13.6 v2.0 (2021-05-28)

• Deprecate quoted keys.

• Add multiline keys to replace quoted keys.

• Add inline lists and dictionaries.

• Move from renderers to converters in dump() and dumps(). Both allow you to support arbitrary data types. With
renderers you provide functions that are responsible for directly creating the text to be inserted in the NestedText
output. This can be complicated and error prone. With converters you instead convert the object to a known
NestedText data type (dict, list, string, . . .) and the dump function automatically formats it appropriately.

• Restructure documentation.

Warning: Be aware that aspects of this version are not backward compatible.

1. It no longer supports quoted dictionary keys.

2. The renderers argument to dump() and dumps() has been replaced by converters.

3. It no longer allows one to specify level in dump() and dumps().

1.13.7 v1.3 (2021-01-02)

• Move the test cases to a submodule.

Note: When cloning the NestedText repository you should use the –recursive flag to get the official_tests submodule:

git clone --recursive https://github.com/KenKundert/nestedtext.git

When updating an existing repository, you need to initialize the submodule after doing a pull:

git submodule update --init --remote tests/official_tests

This only need be done once.

1.13. Releases 61

NestedText, Release 3.3.0

1.13.8 v1.2 (2020-10-31)

• Treat CR LF, CR, or LF as a line break.

• Always quote keys that start with a quote.

1.13.9 v1.1 (2020-10-13)

• Add ability to specify return type of load() and loads().

• Quoted keys are now less restricted.

• Empty dictionaries and lists are rejected by dump() and dumps() except as top-level object if default argument
is specified as ‘strict’.

Warning: Be aware that this version is not fully backward compatible. Unlike previous versions, this version
allows you to restrict the type of the return value of the load() and loads() functions, and the default is ‘dict’.
The previous behavior is still supported, but you must explicitly specify top=’any’ as an argument.

This change results in a simpler return value from load() and loads() in most cases. This substantially reduces
the chance of coding errors. It was noticed that it was common to simply assume that the top-level was a dictionary
when writing code that used these functions, which could result in unexpected errors when users hand-create the
input data. Specifying the return value eliminates this type of error.

There is another small change that is not backward compatible. The source argument to these functions is now a
keyword only argument.

1.13.10 v1.0 (2020-10-03)

• Production release.

62 Chapter 1. Contributing

INDEX

A
as_line() (nestedtext.Location method), 54
as_tuple() (nestedtext.Location method), 54

D
dump() (in module nestedtext), 50
dumps() (in module nestedtext), 46

G
get_codicil() (nestedtext.NestedTextError method),

59
get_culprit() (nestedtext.NestedTextError method),

59
get_lines_from_keys() (in module nestedtext), 55
get_message() (nestedtext.NestedTextError method),

58
get_original_keys() (in module nestedtext), 56
get_value_from_keys() (in module nestedtext), 55

J
join_keys() (in module nestedtext), 56

L
load() (in module nestedtext), 53
loads() (in module nestedtext), 51
Location (class in nestedtext), 54

N
NestedTextError, 57

R
render() (nestedtext.NestedTextError method), 60
report() (nestedtext.NestedTextError method), 59
reraise() (nestedtext.NestedTextError method), 59

T
terminate() (nestedtext.NestedTextError method), 59

63

	Contributing
	The Zen of NestedText
	Alternatives
	JSON
	YAML
	TOML or INI
	CSV or TSV
	Really, Only Strings?

	Language introduction
	Dictionaries
	Lists
	Strings
	Comments
	Nesting
	NestedText Files

	Language reference
	Minimal NestedText
	Related projects
	Reference Material
	nestedtext docs
	nestedtext source
	nestedtext_tests

	Implementations
	nestex
	nestedtext-ruby
	janet-nested-text
	zig-nestedtext

	Utilities
	parametrize from file
	vim-nestedtext
	visual studio

	Language changes
	Latest development version
	v3.3 (2022-06-07)
	v3.2 (2022-01-17)
	v3.1 (2021-07-23)
	v3.0 (2021-07-17)
	v2.0 (2021-05-28)
	v1.3 (2021-01-02)
	v1.2 (2020-10-31)
	v1.1 (2020-10-13)
	v1.0 (2020-10-03)

	Basic use
	Installation
	NestedText Reader
	NestedText Writer

	Schemas
	Examples
	Validate with Pydantic
	Validate with Voluptuous
	JSON to NestedText
	NestedText to JSON
	CSV to NestedText
	PyTest
	Pretty Printing
	Normalizing keys
	References

	Common mistakes
	Python API
	dumps
	dump
	loads
	load
	Location
	Utilities
	NestedTextError

	Releases
	Latest development version
	v3.3 (2022-06-07)
	v3.2 (2022-01-17)
	v3.1 (2021-07-23)
	v3.0 (2021-07-17)
	v2.0 (2021-05-28)
	v1.3 (2021-01-02)
	v1.2 (2020-10-31)
	v1.1 (2020-10-13)
	v1.0 (2020-10-03)

	Index

