

NestedText: A Human Friendly Data Format

[image: _images/month.svg]
 [https://pepy.tech/project/nestedtext][image: _images/nestedtext.svg]
 [https://nestedtext.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://github.com/KenKundert/nestedtext/actions/workflows/build.yaml][image: _images/badge1.svg]
 [https://coveralls.io/github/KenKundert/nestedtext?branch=master][image: _images/nestedtext1.svg]
 [https://pypi.python.org/pypi/nestedtext][image: _images/nestedtext2.svg]
 [https://pypi.python.org/pypi/nestedtext]
Authors: Ken & Kale Kundert

Version: 3.4.0

Released: 2022-06-15

Documentation: nestedtext.org [https://nestedtext.org].

Please post all questions, suggestions, and bug reports to: Github [https://github.com/KenKundert/nestedtext/issues].

NestedText is a file format for holding structured data to be entered, edited,
or viewed by people. It organizes the data into a nested collection of
dictionaries, lists, and strings without the need for quoting or escaping.
A unique feature of this file format is that it only supports one scalar type:
strings. While the decision to eschew integer, real, date, etc. types may seem
counter intuitive, it leads to simpler data files and applications that are more
robust.

NestedText is convenient for configuration files, address books, account
information, and the like. Because there is no need for quoting or escaping, it
is particularly nice for holding code fragments. Here is an example of a file
that contains a few addresses:

Contact information for our officers

Katheryn McDaniel:
 position: president
 address:
 > 138 Almond Street
 > Topeka, Kansas 20697
 phone:
 cell: 1-210-555-5297
 home: 1-210-555-8470
 # Katheryn prefers that we always call her on her cell phone.
 email: KateMcD@aol.com
 additional roles:
 - board member

Margaret Hodge:
 position: vice president
 address:
 > 2586 Marigold Lane
 > Topeka, Kansas 20682
 phone: 1-470-555-0398
 email: margaret.hodge@ku.edu
 additional roles:
 - new membership task force
 - accounting task force

Contributing

This package contains a Python reference implementation of NestedText and
a test suite. Implementation in many languages is required for NestedText to
catch on widely. If you like the format, please consider contributing
additional implementations.

Also, please consider using NestedText for any applications you create. It is
especially suitable for configuration files.

Language

	Philosophy

	Alternatives

	Language introduction

	Language reference

	Minimal NestedText

	Related projects

	Language changes

Python Implementation

	Basic use

	Schemas

	Examples

	Common mistakes

	Python API

	Releases

The Zen of NestedText

NestedText aspires to be a simple dumb receptacle that holds peoples’
structured data and does so in a way that allows people to easily interact with
that data.

The desire to be simple is an attempt to minimize the effort required to learn
and use the language. Ideally, people can understand it by looking at a few
examples. And ideally, they can use it without needing to remember any arcane
rules or relying on any knowledge that programmers accumulate through years of
experience. One source of simplicity is consistency. As such, NestedText
uses a small number of rules that it applies with few exceptions.

The desire to be dumb means that NestedText tries not to transform the data in
any meaningful way to avoid creating unpleasant surprises. It parses the
structure of the data without doing anything that might change how the data is
interpreted. Instead, it aims to make it easy for you to interpret the data
yourself. After all, you understand what the data is supposed to mean, so you
are in the best position to interpret it. There are also many powerful tools
available to help with this exact task.

Alternatives

There are no shortage of well established alternatives to NestedText for
storing data in a human-readable text file. The features and shortcomings of
some of these alternatives are discussed next. NestedText is intended to be
used in situations where people either create, modify, or consume the data
directly. It is this perspective that informs these comparisons.

JSON

JSON [https://www.json.org/json-en.html] is a subset of JavaScript suitable for holding data. Like NestedText,
it consists of a hierarchical collection of objects (dictionaries), lists, and
strings, but also allows numbers, Booleans and nulls. In practice, JSON is
largely generated and consumed by machines. The data is stored as text, and so
can be read, modified, and consumed directly by the end user, but the format is
not optimized for this use case and so is often cumbersome or inefficient when
used in this manner.

JSON supports all the native data types common to most languages. Syntax is
added to values to unambiguously indicate their type. For example, 2,
2.0, and "2" are three different values with three different types
(integer, real, string). This adds two types of complexity. First, the rules
for distinguishing various types must be learned and used. Second, all strings
must be quoted, and
with quoting comes escaping, which is needed to allow quote characters to be
included in strings.

JSON was derived as a subset of JavaScript, and so inherits a fair amount of
syntactic clutter that can be annoying for users to enter and maintain. In
addition, features that would improve clarity are lacking. Comments are not
allowed, multiline strings are not supported, and whitespace is insignificant
(leading to the possibility that the appearance of the data may not match its
true structure).

NestedText only supports three data types (strings, lists and dictionaries)
and does not have the baggage of being the subset of a general purpose
programming language. The result is a simpler language that has the following
clear advantages over JSON as a human readable and writable data file format:

	strings do not require quotes

	comments

	multiline strings

	no need to escape special characters

	commas are not used to separate dictionary and list items

The following examples illustrate the difference between JSON and NestedText:

JSON{
 "treasurer": {
 "name": "Fumiko Purvis",
 "address": "3636 Buffalo Ave\nTopeka, Kansas 20692",
 "phone": "1-268-555-0280",
 "email": "fumiko.purvis@hotmail.com",
 "additional roles": [
 "accounting task force"
]
 }
}

NestedTexttreasurer:
 name: Fumiko Purvis
 # Fumiko's term is ending at the end of the year.
 # She will be replaced by Merrill Eldridge.
 address:
 > 3636 Buffalo Ave
 > Topeka, Kansas 20692
 phone: 1-268-555-0280
 email: fumiko.purvis@hotmail.com
 additional roles:
 - accounting task force

YAML

YAML [https://yaml.org/] is considered by many to be a human friendly alternative to JSON. There
is less syntactic clutter and the quoting of strings is optional. However, it
also supports a wide variety of data types and formats. The optional quoting
can result in the type of values being ambiguous. To distinguish between the
various types, a complicated and non-intuitive set of rules developed. YAML at
first appears very appealing when used with simple examples, but things can
quickly become complicated or provide unexpected results. A reaction to this is
the use of YAML subsets, such as StrictYAML. However, the subsets still try to
maintain compatibility with YAML and so inherit much of its complexity. For
example, both YAML and StrictYAML support nine different ways of writing
multiline strings [http://stackoverflow.com/a/21699210/660921].

YAML avoids excessive quoting and supports comments and multiline strings, but
the multitude of formats and disambiguation rules make YAML a difficult language
to learn, and the ambiguities creates traps for the user.
To illustrate these points, the following is a condensation of a YAML document
taken from the GitHub documentation that describes how to configure continuous
integration using Python:

YAMLname: Python package
on: [push]
build:
 python-version: [3.6, 3.7, 3.8, 3.9, 3.10]
 steps:
 - name: Install dependencies
 run: |
 python -m pip install --upgrade pip
 pip install pytest
 if [-f 'requirements.txt']; then pip install -r requirements.txt; fi
 - name: Test with pytest
 run: |
 pytest

And here is the result of running that document through the Python YAML reader
and writer.

YAML (round-trip)name: Python package
true:
- push
build:
 python-version:
 - 3.6
 - 3.7
 - 3.8
 - 3.9
 - 3.1
 steps:
 - name: Install dependencies
 run: 'python -m pip install --upgrade pip

 pip install pytest

 if [-f ''requirements.txt'']; then pip install -r requirements.txt; fi

 '
 - name: Test with pytest
 run: 'pytest

 '

There are a few things to notice about this second version.

	on key was inappropriately converted to true.

	Python version 3.10 was inappropriately converted to 3.1.

	The multiline string was converted to a different representation that added
blank lines between each line, greatly confusing the presentation of the
string.

	Escaping was required for the quotes on 'requirements.txt'.

	Indentation is not an accurate reflection of nesting (notice that
python-version and - 3.6 have the same indentation, but - 3.6 is
contained inside python-version).

One might expect that the format might change a bit while the underlying
information remains constant. But that is not the case. The ambiguities in the
format result in both on and 3.10 being changed in value and meaning.

Now consider the NestedText version; it is simpler and not subject to
misinterpretation.

NestedTextname: Python package
on:
 - push
build:
 python-version:
 - 3.6
 - 3.7
 - 3.8
 - 3.9
 - 3.10
 steps:
 -
 name: Install dependencies
 run:
 > python -m pip install --upgrade pip
 > pip install pytest
 > if [-f 'requirements.txt']; then pip install -r requirements.txt; fi
 -
 name: Test with pytest
 run: pytest

NestedText was inspired by YAML, but eschews its complexity. It has the
following clear advantages over YAML as a human readable and writable data
file format:

	simple

	unambiguous (no implicit typing)

	no unexpected conversions of the data

	syntax is insensitive to special characters within text

	safe, no risk of malicious code execution

	round-tripping from NestedText does not result in changed values or ugly and
confusing presentations

TOML or INI

TOML [https://toml.io/en/] is a configuration file format inspired by the well-known INI [https://en.wikipedia.org/wiki/INI_file] syntax. It
supports a number of basic data types (notably including dates and times) using
syntax that is more similar to JSON (explicit but verbose) than to YAML
(succinct but confusing). As discussed previously, though, this makes it the
responsibility of the user to specify the correct type for each field.

Another flaw in TOML is that it is difficult to specify deeply nested
structures. The only way to specify a nested dictionary is to give the full
key to that dictionary, relative to the root of the entire hierarchy. This is
not much a problem if the hierarchy only has 1-2 levels, but any more than that
and you find yourself typing the same long keys over and over. A corollary to
this is that TOML-based configurations do not scale well: increases in
complexity are often accompanied by disproportionate decreases in readability
and writability.

Here is an example of a configuration file in TOML and NestedText:

TOML[plugins]
auth = ['avendesora']
archive = ['ssh', 'gpg', 'avendesora', 'emborg', 'file']
publish = ['scp', 'mount']

[auth.avendesora]
account = 'login'
field = 'passcode'

[archive.file]
src = ['~/src/nfo/contacts']
[archive.avendesora]
[archive.emborg]
config = 'rsync'

[publish.scp]
host = ['backups']
remote_dir = 'archives/{date:YYMMDD}'

[publish.mount]
drive = '/mnt/secrets'
remote_dir = 'sparekeys/{date:YYMMDD}'

NestedTextplugins:
 auth:
 - avendesora
 archive:
 - ssh
 - gpg
 - avendesora
 - emborg
 - file
 publish:
 - scp
 - mount
auth:
 avendesora:
 account: login
 field: passcode
archive:
 file:
 src:
 - ~/src/nfo/contacts
 avendesora:
 {}
 emborg:
 config: rsync
publish:
 scp:
 host:
 - backups
 remote_dir: archives/{date:YYMMDD}
 mount:
 drive: /mnt/secrets
 remote_dir: sparekeys/{date:YYMMDD}

NestedText has the following clear advantages over TOML and INI as a human
readable and writable data file format:

	text does not require quoting or escaping

	data is left in its original form

	indentation used to succinctly represent nested data

	the structure of the file matches the structure of the data

	heavily nested data is represented efficiently

CSV or TSV

CSV [https://en.wikipedia.org/wiki/Comma-separated_values] (comma-separated values) and the closely related TSV [https://en.wikipedia.org/wiki/Tab-separated_values] (tab-separated
values) are exchange formats for tabular data. Tabular data consists of
multiple records where each record is made up of a consistent set of fields.
The format separates the records using line breaks and separates the fields
using commas or tabs. Quoting and escaping is required when the fields contain
line breaks or commas/tabs.

Here is an example data file in CSV and NestedText.

CSVYear,Agriculture,Architecture,Art and Performance,Biology,Business,Communications and Journalism,Computer Science,Education,Engineering,English,Foreign Languages,Health Professions,Math and Statistics,Physical Sciences,Psychology,Public Administration,Social Sciences and History
1970,4.22979798,11.92100539,59.7,29.08836297,9.064438975,35.3,13.6,74.53532758,0.8,65.57092343,73.8,77.1,38,13.8,44.4,68.4,36.8
1980,30.75938956,28.08038075,63.4,43.99925716,36.76572529,54.7,32.5,74.98103152,10.3,65.28413007,74.1,83.5,42.8,24.6,65.1,74.6,44.2
1990,32.70344407,40.82404662,62.6,50.81809432,47.20085084,60.8,29.4,78.86685859,14.1,66.92190193,71.2,83.9,47.3,31.6,72.6,77.6,45.1
2000,45.05776637,40.02358491,59.2,59.38985737,49.80361649,61.9,27.7,76.69214284,18.4,68.36599498,70.9,83.5,48.2,41,77.5,81.1,51.8
2010,48.73004227,42.06672091,61.3,59.01025521,48.75798769,62.5,17.6,79.61862451,17.2,67.92810557,69,85,43.1,40.2,77,81.7,49.3

NestedText-
 Year: 1970
 Agriculture: 4.22979798
 Architecture: 11.92100539
 Art and Performance: 59.7
 Biology: 29.08836297
 Business: 9.064438975
 Communications and Journalism: 35.3
 Computer Science: 13.6
 Education: 74.53532758
 Engineering: 0.8
 English: 65.57092343
 Foreign Languages: 73.8
 Health Professions: 77.1
 Math and Statistics: 38
 Physical Sciences: 13.8
 Psychology: 44.4
 Public Administration: 68.4
 Social Sciences and History: 36.8
-
 Year: 1980
 Agriculture: 30.75938956
 Architecture: 28.08038075
 Art and Performance: 63.4
 Biology: 43.99925716
 Business: 36.76572529
 Communications and Journalism: 54.7
 Computer Science: 32.5
 Education: 74.98103152
 Engineering: 10.3
 English: 65.28413007
 Foreign Languages: 74.1
 Health Professions: 83.5
 Math and Statistics: 42.8
 Physical Sciences: 24.6
 Psychology: 65.1
 Public Administration: 74.6
 Social Sciences and History: 44.2
-
 Year: 1990
 Agriculture: 32.70344407
 Architecture: 40.82404662
 Art and Performance: 62.6
 Biology: 50.81809432
 Business: 47.20085084
 Communications and Journalism: 60.8
 Computer Science: 29.4
 Education: 78.86685859
 Engineering: 14.1
 English: 66.92190193
 Foreign Languages: 71.2
 Health Professions: 83.9
 Math and Statistics: 47.3
 Physical Sciences: 31.6
 Psychology: 72.6
 Public Administration: 77.6
 Social Sciences and History: 45.1
-
 Year: 2000
 Agriculture: 45.05776637
 Architecture: 40.02358491
 Art and Performance: 59.2
 Biology: 59.38985737
 Business: 49.80361649
 Communications and Journalism: 61.9
 Computer Science: 27.7
 Education: 76.69214284
 Engineering: 18.4
 English: 68.36599498
 Foreign Languages: 70.9
 Health Professions: 83.5
 Math and Statistics: 48.2
 Physical Sciences: 41
 Psychology: 77.5
 Public Administration: 81.1
 Social Sciences and History: 51.8
-
 Year: 2010
 Agriculture: 48.73004227
 Architecture: 42.06672091
 Art and Performance: 61.3
 Biology: 59.01025521
 Business: 48.75798769
 Communications and Journalism: 62.5
 Computer Science: 17.6
 Education: 79.61862451
 Engineering: 17.2
 English: 67.92810557
 Foreign Languages: 69
 Health Professions: 85
 Math and Statistics: 43.1
 Physical Sciences: 40.2
 Psychology: 77
 Public Administration: 81.7
 Social Sciences and History: 49.3

It is hard to beat the compactness of CSV for tabular data, however
NestedText has the following advantages over CSV and TSV as a human
readable and writable data file format that may make it preferable in some
situation:

	text does not require quoting or escaping

	arbitrary data hierarchies are supported

	file representation tends to be tall and skinny rather than short and fat

	easier to read

Really, Only Strings?

NestedText and its alternatives are all trying to represent structured data.
Of them, only NestedText limits you to strings for the scalar values.
The alternatives all allow other data types to be represented as well, such as
integers, reals, Booleans, etc. Since real applications invariably require
all these data types, you might think, “if I use NestedText, I’ll have to
convert all these strings myself, and that will make my application code
more complicated”. In fact, using NestedText will make your application
code more robust with little to no increase in complexity:

Schemas make data conversions easy.For robustness, all data should be validated when reading it to assure there
are no errors. This is performed conveniently and efficiently with
a schema. Schemas are used to specify the expected type
for each value and are easily extended to perform type conversion as needed.
For example, if a particular value should be an integer but a string is
provided, as with NestedText, the package that implements the schema can
be configured to attempt to convert the string to an integer and only report
an error if it cannot.

You have to handle the bad user input anyway.Applications that need to interpret the input data always make assumptions
about the data being read. For example, email fields are expected to
contain strings that can be interpreted as an email address. In practice,
every field can and probably should be checked in some way. Even with
NestedText that constrains the scalar values to strings, one must assure
that a list or dictionary is not given where a string is expected. When
every value is being checked there little to no benefit to the underlying
data receptacle being aware the type of each value. Rather it is very
constraining.

Supporting native data types raises its own issues:

No format can support all possible data types.NestedText gains simplicity by jettisoning native support for scalar data
types other than strings. However it is important to recognize that the
alternatives must do this as well. There are an unlimited number of data
types that can be supported and they cannot support them all. Common data
types that are generally not supported include dates, times, and quantities
(numbers with units, such as $20.00 and 47 kΩ). With all languages there is
a decision to be made: what types should be supported natively. Each
additional type increases the complexity of the format. If only strings are
supported, as with NestedText, things are pretty simple. Adding any other
data type then requires supporting quoting and escaping, which is
a substantial jump up in complexity.

Data types that are not natively supported are generally passed as strings
that are later converted to the right type by the end application. This
approach actually provides substantial benefits. The end application has
context that a general purpose data reader cannot have. For example, the
date 10/07/08 could represent either 10 August 2008 or October 7, 2008,
or perhaps even July 8, 2010. Only the user and the application would know
which.

Native data types can be ambiguous.The type of the value 2 is ambiguous; it may be integer or real. This
may cause problems when combined into an array, such as [1.85, 1.94, 2,
2.09]. A casually written program may choke on a non-homogeneous array
that consists of an integer among the floats. This is the reason that JSON
does not distinguish between integers and reals.

YAML is notorious for ambiguities because it allows unquoted strings. 2
is a valid integer, real, and string. Similarly, no is a valid Boolean
and string. In fact, every single value in YAML that is not quoted is also
a valid string. Many people that use YAML simply quote every string, but
that does not solve all the problems because things that are not intended to
be strings can be converted to strings, such as 09.

There is also the issue of the internal representation of the data. Is the
integer represented using 32 bits, 64 bits, or can the integer by
arbitrarily large? Is a real number represented as a 64 bit or 128 bit
float, or is it represented by a decimal or rational number? Are
exceptional values such as infinity or not-a-number supported? Sometimes
such things are specified in the definition of the format, but often they
are left as details of the implementation. The result could be overflows,
underflows, loss of precision, errors, and compatibility issues.

Native data types can lose information.It is common to format real numbers so as to convey the meaningful precision
of the number. For example, 2 or 2. represents a number with one
digit of precision, 2.0 represents a number with two digits of
precision, 2.00 represents a number with three digits of precision, etc.
This information on the precision of the number is lost when these numbers
are converted to the float data type.

This same issue also causes problems when representing version numbers. The
number 3.10 is used to represent version three point ten, but when
converted to a float becomes version three point one.

There are also cases where multiple formats map to the same underlying data
type. For example, integers may be given in binary, octal, decimal, or
hexadecimal formats. YAML provides almost a dozen different ways to specify
strings. This causes problems when round-tripping, which is where you read
a file, perhaps process it, and then write it back out. Since the data is
converted to an internal data type, the original formatting is lost, meaning
that the program that writes out the data cannot know how it was originally
specified. Integers are generally written out as decimal number regardless
of how they were specified. In YAML, the writer checks to see if a string
contains a newline and if so simply chooses one of the 9 possible multiline
string formats arbitrarily. This is why in the round-trip YAML
example given above the Python script ends up being interleaved
with blank lines.

Using NestedText also makes life easier for your end-users:

Native types may be unfamiliar, inconvenient, or confusing for end users.Casual users may not understand that 2 is treated differently than
2.0, which may cause issues in applications that are not carefully
written.

TOML natively accepts dates and times, but only in ISO-8601 formats [https://en.wikipedia.org/wiki/ISO_8601]. Casual users are unlikely to be
familiar with this format or may find it awkward or cumbersome.

YAML natively accepts sexagesimal (base 60) numbers in the form 2:30:00,
which YAML converts to 9000. If this is a duration, it would likely imply
2 hours, 30 minutes and 0 seconds, which totals to 9000 seconds. It may be
also used for the time of day. Someone that normally uses twelve hour time
formatting might write 2:30:00 AM and get a string. Someone that uses
twenty-four hours formatting might write 2:30:00 and get the integer
9000, or they might write 02:30:00 and get a string. However, if they
entered a time 12 hours later, 16:30:00, they would get an integer
again.

Native data types are distinguished from each other by using conventions
that are second nature to programmers. Conventions such as “you must quote
strings”, “quote characters in strings must be escaped”, “you escape an
escape character by doubling it up”, “real numbers must contain a decimal
point” and “real numbers may not contain units”.

Casual users are unlikely to know these conventions, which causes
frustration and errors. Forcing them to know and use these conventions
represents an undesirable and sometimes overwhelming burden. This is
particularly true for YAML, which can be a minefield even for programmers.
Consider the following:

Hey there! and "Hey there!" represent the same string.

She said, "Hey there!" is a valid string,
but "She said, "Hey there!"" is an error.

She said, "Hey there!" is a valid string,
but She said: "Hey there!" is an error.

3.10.4 is a string, but 3.10 is a real and 3 is an integer.

10 is 10, but 010 is 8 and 09 is “09”, a string.

Now is a string, but No is a Boolean.

(1 + 2) is a string, but [1 + 2] is a list.

02:30:00 is a string but 2:30:00 is 9000.

Only programmers with substantial experience with YAML can anticipate or
even understand this behavior.

Other languages have similar, but less extreme challenges, particularly the
need for quoting and escaping.

Support for non-string types creates the requirement for quoting and
escaping, and ultimately leads to either verbosity (JSON) or ambiguity
(YAML).Every additional supported data type brings a challenge; how to
unambiguously distinguish it from the others. The challenge is particularly
acute for strings because they consist of any possible sequence of
characters and so can be confused with all other data types. NestedText
addresses this issue by limiting the scalar values to only be strings. That
way, there is no need to distinguish the strings from other possible data
types.

The alternatives all distinguish strings by surrounding them with quotes.
This adds visual clutter and makes them more difficult to type. This is not
generally a problem if there are only a few stings, but it becomes a drag if
there is are many. However, quoting brings another challenge. Since
a string can consist of any sequence of characters, it can include the quote
characters. Now the quote characters within the string must be
distinguished from the quote characters that delimit the string; a process
referred to as escaping the character. This is often done with an special
escape character, generally the backslash, but may be done by duplicating
the character to be escaped. The string may naturally contain escape
characters and they would need escaping as well. This represents a deep
hole. For example, consider the following Python dictionary that contains
a collection of regular expressions. The regular expressions are quoted
strings that by their very nature generally require a large amount of
escaping:

regexes = dict(
 double_quoted_string = r'"(?:[^"\\]|\\.)*"',
 single_quoted_string = r"'(?:[^'\\]|\\.)*'",
 identifier = r'[a-zA-Z_][a-zA-Z_0-9]*',
 number = r"[+-]?[0-9]+\.?[0-9]*(?:[eE][+-]?[0-9]+)?",
)

Converting this to JSON illustrates the problem:

{
 "double_quoted_string": "\"(?:[^\"\\\\]|\\\\.)*\"",
 "single_quoted_string": "'(?:[^'\\\\]|\\\\.)*'",
 "identifier": "[a-zA-Z_][a-zA-Z_0-9]*",
 "number": "[+-]?[0-9]+\\.?[0-9]*(?:[eE][+-]?[0-9]+)?"
}

The number of escape characters more than doubled. This problem does not occur
in NestedText, which is actually cleaner than the original Python:

double_quoted_string: "(?:[^"\\]|\\.)*"
single_quoted_string: '(?:[^'\\]|\\.)*'
identifier: [a-zA-Z_][a-zA-Z_0-9]*
number: [+-]?[0-9]+\.?[0-9]*(?:[eE][+-]?[0-9]+)?

Data type is an implementation detail that should not concern the end user.In general, users that are expected to read, write, or modify structured
data benefit from formats tailored to their needs. That only happens when
the values are passed as strings that are interpreted by the end
application.

Native data types should only be used when both the data generator and the
data consumer are machines, preferably using the same software packages to
both read and write the data files. In such cases, only programmers would
view or edit the files, and only in unusual cases.

Native data types provide little value but many drawbacks. By limiting the
scalar values to be only strings, NestedText sidesteps all of these issues,
and it is unique in that regard.

Language introduction

This is a overview of the syntax of a NestedText document, which consists of
a nested collection of dictionaries,
lists, and strings where indentation is used to
indicate nesting. All leaf values must be simple text or empty. You can find
more specifics in the next section.

Dictionaries

A dictionary is an ordered collection of key value pairs:

key 1: value 1
key 2: value 2
key 3: value 3

A dictionary item is a single key value pair. A dictionary is all adjacent
dictionary items in which the keys all begin at the same level of indentation.
There are several different ways to specify dictionaries.

In the first form, the key and value are separated by a dictionary tag, which is
a colon followed by a space or newline (:␣ or :↵). The key must be
a string and must not start with a -␣, >␣, :␣, [, {, #,
or white space character; or contain newline characters or the :␣ character
sequence. Any spaces between the key and the tag are ignored.

The value of this dictionary item may be a rest-of-line string, a multiline
string, a list, or a dictionary. If it is a rest-of-line string, it contains all
characters following the tag that separates the key from the value (:␣).
For all other values, the rest of the line must be empty, with the value given
on the next line, which must be further indented.

key 1: value 1
key 2:
key 3:
 - value 3a
 - value 3b
key 4:
 key 4a: value 4a
 key 4b: value 4b
key 5:
 > first line of value 5
 > second line of value 5

Which is equivalent to the following JSON code:

{
 "key 1": "value 1",
 "key 2": "",
 "key 3": [
 "value 3a",
 "value 3b"
],
 "key 4": {
 "key 4a": "value 4a",
 "key 4b": "value 4b"
 },
 "key 5": "first line of value 5\nsecond line of value 5"
}

A second less common form of a dictionary item employs multiline keys. In this
case there are no limitations on the key other than it being a string. Each
line of a multiline key is introduced with a colon (:) followed by a space
or newline. The key is all adjacent lines at the same level that start with
a colon tag with the tags removed but leading and trailing white space retained,
including all newlines except the last.

This form of dictionary does not allow rest-of-line string values; you would use
a multiline string value instead:

: key 1
: the first key
 > value 1
: key 2: the second key
 - value 2a
 - value 2b

A dictionary may consist of dictionary items of either form.

The final form of a dictionary is the inline dictionary. This is a compact form
where all the dictionary items are given on the same line. There is a bit of
syntax that defines inline dictionaries, so the keys and values are constrained
to avoid ambiguities in the syntax. An inline dictionary starts with an opening
brace ({), ends with a matching closing brace (}), and contains inline
dictionary items separated by commas (,). An inline dictionary item is a key
and value separated by a colon (:). A space need not follow the colon. The
keys are inline strings and the values may be inline strings, inline lists, and
inline dictionaries. An empty dictionary is represented with {} (there can
be no space between the opening and closing braces). Leading and trailing
spaces are stripped from keys and string values within inline dictionaries.

For example:

{key 1: value 1, key 2: value 2, key 3: value 3}

{key 1: value 1, key 2: [value 2a, value 2b], key 3: {key 3a: value 3a, key 3b: value 3b}}

Lists

A list is an ordered collection of values:

- value 1
- value 2
- value 3

A list item is introduced with a list tag: a dash followed by a space or
a newline at the start of a line (-␣ or -↵). All adjacent list items at
the same level of indentation form the list.

The value of a list item may be a rest-of-line string, a multiline string,
a list, or a dictionary. If it is a rest-of-line string, it contains all
characters that follow the tag that introduces the list item. For all other
values, the rest of the line must be empty, with the value given on the next
line, which must be further indented.

- value 1
-
-
 - value 3a
 - value 3b
-
 key 4a: value 4a
 key 4b: value 4b
-
 > first line of value 5
 > second line of value 5

Which is equivalent to the following JSON code:

[
 "value 1",
 "",
 [
 "value 3a",
 "value 3b"
],
 {
 "key 4a": "value 4a",
 "key 4b": "value 4b"
 },
 "first line of value 5\nsecond line of value 5"
]

Another form of a list is the inline list. This is a compact form where all the
list items are given on the same line. There is a bit of syntax that defines
the list, so the values are constrained to avoid ambiguities in the syntax. An
inline list starts with an opening bracket ([), ends with a matching closing
bracket (]), and contains inline values separated by commas. The values may
be inline strings, inline lists, and inline dictionaries. An empty list is
represented by [] (there should be no space between the opening and closing
brackets). Leading and trailing spaces are stripped from string values within
inline lists.

For example:

[value 1, value 2, value 3]

[value 1, [value 2a, value 2b], {key 3a: value 3a, key 3b: value 3b}]

[] is not treated as an empty list as there is space between the brackets,
rather this represents a list with a single empty string value. The contents of
the brackets, which consists only of white space, is stripped of its padding,
leaving an empty string.

Strings

There are three types of strings: rest-of-line strings, multiline strings, and
inline strings. Rest-of-line strings are simply all the characters on a line
that follow a list tag (-␣) or dictionary tag (:␣), including any
leading or trailing white space. They can contain any character other than
a newline. The content of the rest-of-line string starts after the first space
that follows the dash or colon of the tag:

code : input signed [7:0] level
regex : [+-]?([0-9]*[.])?[0-9]+\s*\w*
math : $x = \frac{{-b \pm \sqrt {b^2 - 4ac}}}{2a}$
unicode: José and François

Multi-line strings are all adjacent lines that are prefixed with a string tag;
the greater-than symbol followed by a space or a newline (>␣ or >↵).
The content of each line starts after the first space that follows the
greater-than symbol:

> This is the first line of a multiline string, it is indented.
> This is the second line, it is not indented.

You can include empty lines in the string simply by specifying the greater-than
symbol alone on a line:

>
> “The worth of a man to his society can be measured by the contribution he
> makes to it — less the cost of sustaining himself and his mistakes in it.”
>
> — Erik Jonsson
>

The multiline string is all adjacent lines that start with a string tag with the
tags removed and the lines joined together with newline characters inserted
between each line. Except for the space that follows the > in the tag,
white space from both the beginning and the end of each line is retained, along
with all newlines except the last.

Inline strings are the string values specified in inline dictionaries and lists.
They are somewhat constrained in the characters that they may contain; nothing
that might be confused with the syntax characters used by the inline list or
dictionary that contains it. Specifically, inline strings may not contain
newlines or any of the following characters: [,], {, }, or
,. In addition, inline strings that are contained in inline dictionaries
may not contain :. Leading and trailing white space are ignored with inline
strings.

Comments

Lines that begin with a hash as the first non-white-space character, or lines
that are empty or consist only of white space are comment lines and are ignored.
Indentation is not significant on comment lines.

this line is ignored

this line is also ignored, as is the blank line above.

Comment lines are ignored when determining whether adjacent lines belong to the
same dictionary, list, or string. For example, the following represents one
multiline string:

> this is the first line of a multiline string
this line is ignored
> this is the second line of the multiline string

Nesting

A value for a dictionary or list item may be a rest-of-line string or it may be
a nested dictionary, list, multiline string, or inline dictionary or list.
Indentation is used to indicate nesting. Indentation increases to indicate the
beginning of a new nested object, and indentation returns to a prior level to
indicate its end. In this way, data can be nested to an arbitrary depth:

Contact information for our officers

Katheryn McDaniel:
 position: president
 address:
 > 138 Almond Street
 > Topeka, Kansas 20697
 phone:
 cell: 1-210-555-5297
 work: 1-210-555-3423
 home: 1-210-555-8470
 # Katheryn prefers that we always call her on her cell phone.
 email: KateMcD@aol.com
 kids:
 - Joanie
 - Terrance

Margaret Hodge:
 position: vice president
 address:
 > 2586 Marigold Lane
 > Topeka, Kansas 20697
 phone:
 {cell: 1-470-555-0398, home: 1-470-555-7570}
 email: margaret.hodge@ku.edu
 kids:
 [Arnie, Zach, Maggie]

It is recommended that each level of indentation be represented by a consistent
number of spaces (with the suggested number being 2 or 4). However, it is not
required. Any increase in the number of spaces in the indentation represents an
indent and the number of spaces need only be consistent over the length of the
nested object.

The data can be nested arbitrarily deeply.

NestedText Files

NestedText files should be encoded with UTF-8 [https://en.wikipedia.org/wiki/UTF-8] and should end with a newline. The
top-level object must not be indented.

The name used for the file is arbitrary but it is tradition to use a
.nt suffix. If you also wish to further distinguish the file type
by giving the schema, it is recommended that you use two suffixes,
with the suffix that specifies the schema given first and .nt given
last. For example: officers.addr.nt.

Language reference

The NestedText format follows a small number of simple rules. Here they are.

Encoding:

A NestedText document is encoded in UTF-8 and may contain any printing
UTF-8 character.

Line breaks:

A NestedText document is partitioned into lines where the lines are split
by CR LF, CR, or LF where CR and LF are the ASCII carriage return and line
feed characters. A single document may employ any or all of these ways of
splitting lines.

Line types:

Each line in a NestedText document is assigned one of the following types:
comment, blank, list item, dictionary item, string item, key
item or inline. Any line that does not fit one of these types is an
error.

Blank lines:

Blank lines are lines that are empty or consist only of white space
characters (spaces or tabs). Blank lines are ignored.

Line-type tags:

Most remaining lines are identified by the presence of tags, where a tag is:

	the first dash (-), colon (:), or greater-than symbol (>) on
a line when followed immediately by a space or line break;

	or a hash {#), left bracket ([), or left brace ({) as the
first non-white space character on a line.

Most of these symbols only introduce tags when they are the first non-space
character on a line, but colon tags need not start the line.

The first (left-most) tag on a line determines the line type. Once the
first tag has been found on the line, any subsequent occurrences of any of
the line-type tags are treated as simple text. For example:

- And the winner is: {winner}

In this case the leading -␣ determines the type of the line and the
:␣ is simply treated as part of the remaining text on the line.

Comments:

Comments are lines that have # as the first non-white-space character on
the line. Comments are ignored.

String items:

If the first non-space character on a line is a greater-than symbol followed
immediately by a space (>␣) or a line break, the line is a string
item. After comments and blank lines have been removed, adjacent string
items with the same indentation level are combined in order into
a multiline string. The string value is the multiline string with the
tags removed. Any leading white space that follows the tag is retained, as
is any trailing white space and all newlines except the last.

String values may contain any printing UTF-8 character.

List items:

If the first non-space character on a line is a dash followed immediately by
a space (-␣) or a line break, the line is a list item. Adjacent list
items with the same indentation level are combined in order into a list.
Each list item has a tag and a value. The tag is only used to determine the
type of the line and is discarded leaving the value. The value takes one of
three forms.

	If the line contains further text (characters after the dash-space), then
the value is that text. The text ends at the line break and may contain
any other printing UTF-8 character.

	If there is no further text on the line and the next line has greater
indentation, then the next line holds the value, which may be a list,
a dictionary, or a multiline string.

	Otherwise the value is empty; it is taken to be an empty string.

Key items:

If the first non-space character on a line is a colon followed immediately
by a space (:␣) or a line break, the line is a key item. After
comments and blank lines have been removed, adjacent key items with the same
indentation level are combined in order into a multiline key. The key
itself is the multiline string with the tags removed. Any leading white
space that follows the tag is retained, as is any trailing white space and
all newlines except the last.

Key values may contain any printing UTF-8 character.

An indented value must follow a multiline key. The indented value may be
either a multiline string, a list or a dictionary. The combination of the
key item and its value forms a dictionary item.

Dictionary items:

Dictionary items take two possible forms.

The first is a dictionary item with inline key. In this case the line
starts with a key followed by a dictionary tag: a colon followed by either
a space (:␣) or a newline. The dictionary item consists of the key, the
tag, and the trailing value. Any space between the key and the tag is
ignored.

The inline key precedes the tag. It must be a non-empty string and must not:

	contain a line break character.

	start with a list item, string item or key item tag,

	start with [or {,

	contain a dictionary item tag, or

	contain leading spaces (any spaces that follow the key are ignored).

The tag is only used to determine the type of the line and is discarded
leaving the key and the value, which follows the tag. The value takes one
of three forms.

	If the line contains further text (characters after the colon-space),
then the value is that text. The text ends at the line break and may
contain any other printing UTF-8 character.

	If there is no further text on the line and the next line has greater
indentation, then the next line holds the value, which may be a list,
a dictionary, or a multiline string.

	Otherwise the value is empty; it is taken to be an empty string.

The second form of dictionary item is the dictionary item with multiline
key. It consists of a multiline key value followed by an indented value.
The value may be a multiline string, list, or dictionary; or an inline list
or dictionary.

Adjacent dictionary items of either form with the same indentation level are
combined in order into a dictionary.

Inline Lists and Dictionaries:

If the first character on a line is either a left bracket ([) or a left
brace ({) the line is an inline structure. A bracket introduces an
inline list and a brace introduces an inline dictionary.

An inline list starts with an open bracket ([), ends with a matching
closed bracket (]), contains inline values separated by commas (,),
and is contained on a single line. The values may be inline strings, inline
lists, and inline dictionaries.

An inline dictionary starts with an open brace ({), ends with
a matching closed brace (}), contains inline dictionary items separated
by commas (,), and is contained on a single line. An inline dictionary
item is a key and value separated by a colon (:). A space need not
follow the colon and any spaces that do follow the colon are ignored. The
keys are inline strings and the values may be inline strings, inline lists,
and inline dictionaries.

Inline strings are the string values specified in inline dictionaries and
lists. They are somewhat constrained in the characters that they may
contain; nothing is allowed that might be confused with the syntax
characters used by the inline list or dictionary that contains it.
Specifically, inline strings may not contain newlines or any of the
following characters: [,], {, }, or ,. In addition,
inline strings that are contained in inline dictionaries may not contain
:. Leading and trailing white space are ignored with inline strings,
this includes spaces, tabs, Unicode spaces, etc.

Both inline lists and dictionaries may be empty, and represent the only way
to represent empty lists or empty dictionaries in NestedText. An empty
dictionary is represented with {} and an empty list with []. In
both cases there must be no space between the opening and closing
delimiters. An inline list that contains only white spaces, such as [
], is treated as a list with a single empty string (the whitespace is
considered a string value, and string values have leading and trailing
spaces removed, resulting in an empty string value). If a list contains
multiple values, no white space is required to represent an empty string
value. Thus, [] represents an empty list, [] a list with a single
empty string value, and [,] a list with two empty string values.

Indentation:

Leading spaces on a line represents indentation. Only ASCII spaces are
allowed in the indentation. Specifically, tabs and the various Unicode
spaces are not allowed.

There is no indentation on the top-level object.

An increase in the number of spaces in the indentation signifies the start
of a nested object. Indentation must return to a prior level when the
nested object ends.

Each level of indentation need not employ the same number of additional
spaces, though it is recommended that you choose either 2 or 4 spaces to
represent a level of nesting and you use that consistently throughout the
document. However, this is not required. Any increase in the number of
spaces in the indentation represents an indent and a decrease to return to
a prior indentation represents a dedent.

An indented value may only follow a list item or dictionary item that does
not have a value on the same line. An indented value must follow a key
item.

Escaping and Quoting:

There is no escaping or quoting in NestedText. Once the line has been
identified by its tag, and the tag is removed, the remaining text is taken
literally.

Empty document:

A document may be empty. A document is empty if it consists only of
comments and blank lines. An empty document corresponds to an empty value
of unknown type.

End of file:

The last character in a NestedText document file is a newline.

Result:

When a document is converted from NestedText the result is a hierarchical
collection of dictionaries, lists and strings. All dictionary keys are
strings.

Minimal NestedText

Minimal NestedText is a subset of NestedText that foregoes some of the
complications of NestedText. It sacrifices the completeness of NestedText
for an even simpler data file format that is still appropriate for
a surprisingly wide variety of applications, such as most configuration files.
The simplicity of Minimal NestedText makes it very easy to create readers and
writers. Indeed, writing such functions is good programming exercise for people
new to recursion.

Minimal NestedText is NestedText without support for multi-line keys and
inline dictionaries and lists.

If you choose to create a Minimal NestedText reader or writer it is important
to code it in such a way as to discourage the creation Minimal NestedText
documents that are invalid NestedText. Thus, your implementation should
disallow keys that start with :␣, [or {. Also, please clearly
indicate that is only supports Minimal NestedText to avoid any confusion.

Many of the examples given in this document conform to the Minimal NestedText
subset. For convenience, here is another:

name: No-Soak Instant Pot Chili

description:
 > Chili with meat and beans.
 >
 > Takes a little over an hour from start to finish while starting with
 > dried beans that have not be pre-soaked.

source: https://thefreerangelife.com/instant-pot-chili

ingredients:
 ground beef: 1-2 pounds
 onion: 1
 garlic: 3-4 cloves
 dry red kidney beans: 1 16-oz bag
 broth: 4 cups
 chili powder: 3 tablespoon
 dried oregano: 1-2 teaspoon
 cumin: 1 teaspoon (optional)
 dice tomatoes: 6 cups (2 large cans or grow your own)
 water: 2-3 cups
 salt and pepper: to taste

directions:
 -
 > Place the 4 cups of broth and the dry kidney beans into the pot of your
 > Instant Pot
 -
 > Add 2 T of chili powder and salt and pepper
 -
 > Place the lid on your Instant Pot and press the bean setting. The timer
 > should read 30 minutes. Allow it to come to pressure and cook.
 -
 > While the beans are cooking, saute beef with onion and garlic.
 -
 > When the timer beeps, do a quick release and open up the pot
 -
 > Add the meat, tomatoes, water, oregano, cumin, and the additional 1T of
 > chili powder and stir well.
 -
 > At this point your pot should be quite full. Close up the Instant Pot
 > again and hit the chili/beans button once more. Allow it to come to
 > pressure and cook.
 -
 > Do a quick release when the chili has finished cooking.

comments:
 > This instant pot chili assumes dried beans.
 >
 > It takes TWO 30 minute cycles.
 > One with just the beans and one with all the ingredients together.
 >
 > If you are not using dried beans, you can skip the first cycle and
 > simply add all of the ingredients to the pot and cook for 30 minutes
 > at high pressure.

Minimal NestedText is powerful enough to satisfy most needs. It is only
necessary to use the extended capabilities of NestedText if you have keys that
start with reserved characters or contain newlines or if your document contains
lots of short lists or dictionaries. In the later situation, being constrained
to use Minimal NestedText might make entry tedious.

Here is another example of Minimal NestedText that shows off a particular
strength of NestedText, its ability to hold code fragments without the need
for quoting or escaping. It holds some Parametrize From File [https://parametrize-from-file.readthedocs.io] test cases for pytest [https://docs.pytest.org]:

test_meta_view:
 -
 id: base
 obj:
 > class DummyConfig(Config):
 > def load(self):
 > yield DictLayer({"x": 1}, location="/path/to/file")
 >
 > class DummyObj:
 > __config__ = [DummyConfig]
 > meta = byoc.meta_view()
 > x = byoc.param()
 >
 > obj = DummyObj()
 > obj.x
 expected:
 x:
 type: LayerMeta
 location: /path/to/file
 -
 id: never-accessed
 obj:
 > class DummyObj:
 > meta = byoc.meta_view()
 > x = byoc.param()
 expected:
 x: NeverAccessedMeta

Related projects

Reference Material

nestedtext docs [https://nestedtext.org]

NestedText documentation and language specification.

nestedtext source [https://github.com/kenkundert/nestedtext]

Source code repository for language documentation and Python implementation.
Report any issues here.

nestedtext_tests [https://github.com/kenkundert/nestedtext_tests]

Official NestedText test suite. Also included as submodule in
nestedtext [https://github.com/kenkundert/nestedtext].

Implementations

nestex [https://github.com/npillmayer/nestext]

Go [https://golang.org/] implementation of NestedText
(supports NestedText v3.0).

nestedtext-ruby [https://github.com/erikw/nestedtext-ruby]

Ruby [https://www.ruby-lang.org/en/] implementation of NestedText
(supports NestedText v3.0).

janet-nested-text [https://github.com/andrewchambers/janet-nested-text]

Janet [https://janet-lang.org/] implementation of NestedText
(supports NestedText v3.0).

zig-nestedtext [https://github.com/LewisGaul/zig-nestedtext]

Zig [https://ziglang.org] implementation of NestedText
(slight subset of NestedText v2.0).

Utilities

parametrize from file [https://github.com/kalekundert/parametrize_from_file]

Separate your test cases, held in NestedText,
from your PyTest [https://docs.pytest.org] test code.

vim-nestedtext [https://github.com/kenkundert/vim-nestedtext]

Vim syntax files for NestedText (supports NestedText v3.0).

visual studio [https://marketplace.visualstudio.com/items?itemName=bmarkovic17.nestedtext]

Syntax files for Visual Studio (supports NestedText v1.0).

Language changes

Currently the language and the Python implementation share version numbers. Since the language is more stable than the
implementation, you will see versions that include no changes to the language.

Latest development version

Version: 3.4.0

Released: 2022-06-15

v3.4 (2022-06-15)

	No changes.

v3.3 (2022-06-07)

	Defined Minimal NestedText, a subset of NestedText.

	NestedText document files should end with a newline.

v3.2 (2022-01-17)

	No changes.

v3.1 (2021-07-23)

	No changes.

v3.0 (2021-07-17)

	Deprecate trailing commas in inline lists and dictionaries.

Warning

Be aware that aspects of this version are not backward compatible.
Specifically, trailing commas are no longer supported in inline
dictionaries and lists. In addition, [] now represents a list with
an that contains an empty string, whereas previously it represented an
empty list.

v2.0 (2021-05-28)

	Deprecate quoted dictionary keys.

	Add multiline dictionary keys to replace quoted keys.

	Add single-line lists and dictionaries.

Warning

Be aware that this version is not backward compatible because it no
longer supports quoted dictionary keys.

v1.3 (2021-01-02)

	No changes.

v1.2 (2020-10-31)

	Treat CR LF, CR, or LF as a line break.

v1.1 (2020-10-13)

	No changes.

v1.0 (2020-10-03)

	Initial release.

Basic use

The NestedText Python API is similar to that of JSON, YAML, TOML, etc.

Installation

pip3 install --user nestedtext

NestedText Reader

The loads() function is used to convert NestedText held in a string into
a Python data structure. If there is a problem interpreting the input text,
a NestedTextError exception is raised.

>>> import nestedtext as nt

>>> content = """
... access key id: 8N029N81
... secret access key: 9s83109d3+583493190
... """

>>> try:
... data = nt.loads(content, top='dict')
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'access key id': '8N029N81', 'secret access key': '9s83109d3+583493190'}

You can also read directly from a file or stream using the load()
function.

>>> from inform import fatal, os_error

>>> try:
... groceries = nt.load('examples/groceries.nt', top='dict')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

>>> print(groceries)
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Notice that the type of the return value is specified to be ‘dict’. This is the
default. You can also specify ‘list’, ‘str’, or ‘any’ (or dict, list, str,
or any). All but ‘any’ constrain the data type of the top-level of the
NestedText content.

The load functions provide a keymap argument that is useful for adding line
numbers to error message. This feature is demonstrated in Validate with Voluptuous. They also provide a normalize_key argument that can be used to
ignore insignificant variation in keys, such as character case, or to convert
keys to a desired form, such as to identifiers. These features are described in
loads().

NestedText Writer

The dumps() function is used to convert a Python data structure into
a NestedText string. As before, if there is a problem converting the input
data, a NestedTextError exception is raised.

>>> try:
... content = nt.dumps(data)
... except nt.NestedTextError as e:
... e.terminate()

>>> print(content)
access key id: 8N029N81
secret access key: 9s83109d3+583493190

The dump() function writes NestedText to a file or stream.

>>> try:
... nt.dump(data, 'examples/access.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

The dump functions provide arguments that can control the output format and
can control the conversion of data types into forms that can be dumped. These
features are described in dumps().

Schemas

Because NestedText explicitly does not attempt to interpret the data it
parses, it is meant to be paired with a tool that can both validate the data
and convert them to the expected types. For example, if you are expecting a
date for a particular field, you would want to validate that the input looks
like a date (e.g. YYYY/MM/DD) and then convert it to a useful type (e.g.
arrow.Arrow). You can do this on an ad hoc basis, or you can apply
a schema.

A schema is the specification of what fields are expected (e.g. “birthday”),
what types they should be (e.g. a date), and what values are legal (e.g. must
be in the past). There are many libraries available for applying a schema to
data such as those parsed by NestedText. Because different libraries may be
more or less appropriate in different scenarios, NestedText avoids favoring
any one library specifically:

	voluptuous [https://github.com/alecthomas/voluptuous]: Define schema using objects

	pydantic [https://pydantic-docs.helpmanual.io/]: Define schema using type annotations

	schema [https://github.com/keleshev/schema]: Define schema using objects

	colander [https://docs.pylonsproject.org/projects/colander/en/latest/]: Define schema using classes

	schematics [http://schematics.readthedocs.io/en/latest/]: Define schema using classes

	cerebus [https://docs.python-cerberus.org/en/stable/] : Define schema using strings

	valideer [https://github.com/podio/valideer]: Define schema using strings

	jsonschema [https://python-jsonschema.readthedocs.io/en/latest/]: Define schema using JSON

See the Examples page for examples of how to use some of these libraries
with NestedText.

The approach of using separate tools for parsing and interpreting the data has
two significant advantages that are worth briefly highlighting. First is that
the validation tool understands the context and meaning of the data in a way
that the parsing tool cannot. For example, “12” can be an integer if it
represents a day of a month, a float if it represents the output voltage of a
power brick, or a string if represents the version of a software package.
Attempting to interpret “12” without this context is inherently unreliable.
Second is that when data is interpreted by the parser, it puts the onus on the
user to specify the correct types. Going back to the previous example, the
user would be required to know whether 12, 12.0, or "12" should be
entered. It does not make sense for this decision to be made by the user
instead of the application.

Examples

Validate with Voluptuous

This example shows how to use voluptuous [https://github.com/alecthomas/voluptuous] to validate and parse a NestedText
file and it demonstrates how to use the keymap argument from loads() or
load() to add location information to Voluptuous error messages.

The input file is the same as in the previous example, i.e. deployment settings
for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
 - www.example.com

database:
 engine: django.db.backends.mysql
 host: db.example.com
 port: 3306
 user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note how the structure of the data is
specified using basic Python objects. The Coerce() function is
necessary to have voluptuous convert string input to the given type; otherwise
it would simply check that the input matches the given type:

#!/usr/bin/env python3

import nestedtext as nt
from voluptuous import Schema, Coerce, MultipleInvalid
from inform import error, full_stop, terminate
from pprint import pprint

schema = Schema({
 'debug': Coerce(bool),
 'secret_key': str,
 'allowed_hosts': [str],
 'database': {
 'engine': str,
 'host': str,
 'port': Coerce(int),
 'user': str,
 },
 'webmaster_email': str,
})
try:
 keymap = {}
 raw = nt.load('deploy.nt', keymap=keymap)
 config = schema(raw)
except nt.NestedTextError as e:
 e.terminate()
except MultipleInvalid as e:
 for err in e.errors:
 kind = 'key' if 'key' in err.msg else 'value'
 loc = keymap[tuple(err.path)]
 error(full_stop(err.msg), culprit=err.path, codicil=loc.as_line(kind))
 terminate()

pprint(config)

This produces the same result as in the previous example.

Validate with Pydantic

This example shows how to use pydantic [https://pydantic-docs.helpmanual.io] to validate and parse a NestedText
file. The file in this case specifies deployment settings for a web server:

debug: false
secret_key: t=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch

allowed_hosts:
 - www.example.com

database:
 engine: django.db.backends.mysql
 host: db.example.com
 port: 3306
 user: www

webmaster_email: admin@example.com

Below is the code to parse this file. Note that basic types like integers,
strings, Booleans, and lists are specified using standard type annotations.
Dictionaries with specific keys are represented by model classes, and it is
possible to reference one model from within another. Pydantic [https://pydantic-docs.helpmanual.io] also has
built-in support for validating email addresses, which we can take advantage of
here:

#!/usr/bin/env python3

import nestedtext as nt
from pydantic import BaseModel, EmailStr
from typing import List
from pprint import pprint

class Database(BaseModel):
 engine: str
 host: str
 port: int
 user: str

class Config(BaseModel):
 debug: bool
 secret_key: str
 allowed_hosts: List[str]
 database: Database
 webmaster_email: EmailStr

obj = nt.load('deploy.nt')
config = Config.parse_obj(obj)

pprint(config.dict())

This produces the following data structure:

{'allowed_hosts': ['www.example.com'],
 'database': {'engine': 'django.db.backends.mysql',
 'host': 'db.example.com',
 'port': 3306,
 'user': 'www'},
 'debug': False,
 'secret_key': 't=)40**y&883y9gdpuw%aiig+wtc033(ui@^1ur72w#zhw3_ch',
 'webmaster_email': 'admin@example.com'}

JSON to NestedText

This example implements a command-line utility that converts a JSON file to
NestedText. It demonstrates the use of dumps() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a JSON file and convert it to NestedText.

usage:
 json-to-nestedtext [options] [<filename>]

options:
 -f, --force force overwrite of output file
 -i <n>, --indent <n> number of spaces per indent [default: 4]
 -w <n>, --width <n> desired maximum line width; specifying enables
 use of single-line lists and dictionaries as long
 as the fit in given width [default: 0]

If <filename> is not given, JSON input is taken from stdin and NestedText output
is written to stdout.
"""

from docopt import docopt
from inform import done, fatal, full_stop, os_error, warn
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:
 indent = int(cmdline['--indent'])
except Exception:
 warn('expected positive integer for indent.', culprit=cmdline['--indent'])
 indent = 4
try:
 width = int(cmdline['--width'])
except Exception:
 warn('expected non-negative integer for width.', culprit=cmdline['--width'])
 width = 0

try:
 # read JSON content; from file or from stdin
 if input_filename:
 input_path = Path(input_filename)
 json_content = input_path.read_text(encoding='utf-8')
 else:
 json_content = sys.stdin.read()
 data = json.loads(json_content)

 # convert to NestedText
 nestedtext_content = nt.dumps(data, indent=indent, width=width) + "\n"

 # output NestedText content; to file or to stdout
 if input_filename:
 output_path = input_path.with_suffix('.nt')
 if output_path.exists():
 if not cmdline['--force']:
 fatal('file exists, use -f to force over-write.', culprit=output_path)
 output_path.write_text(nestedtext_content, encoding='utf-8')
 else:
 sys.stdout.write(nestedtext_content)

except OSError as e:
 fatal(os_error(e))
except nt.NestedTextError as e:
 e.terminate()
except KeyboardInterrupt:
 done()
except json.JSONDecodeError as e:
 # create a nice error message with surrounding context
 msg = e.msg
 culprit = input_filename
 codicil = None
 try:
 lineno = e.lineno
 culprit = (culprit, lineno)
 colno = e.colno
 lines_before = e.doc.split('\n')[lineno-2:lineno]
 lines = []
 for i, l in zip(range(lineno-len(lines_before), lineno), lines_before):
 lines.append(f'{i+1:>4}> {l}')
 lines_before = '\n'.join(lines)
 lines_after = e.doc.split('\n')[lineno:lineno+1]
 lines = []
 for i, l in zip(range(lineno, lineno + len(lines_after)), lines_after):
 lines.append(f'{i+1:>4}> {l}')
 lines_after = '\n'.join(lines)
 codicil = f"{lines_before}\n {colno*' '}△\n{lines_after}"
 except Exception:
 pass
 fatal(full_stop(msg), culprit=culprit, codicil=codicil)

Be aware that not all JSON data can be converted to NestedText, and in the
conversion much of the type information is lost.

json-to-nestedtext can be used as a JSON pretty printer:

> json-to-nestedtext < fumiko.json
treasurer:
 name: Fumiko Purvis
 address:
 > 3636 Buffalo Ave
 > Topeka, Kansas 20692
 phone: 1-268-555-0280
 email: fumiko.purvis@hotmail.com
 additional roles:
 - accounting task force

NestedText to JSON

This example implements a command-line utility that converts a NestedText file
to JSON. It demonstrates the use of load() and
NestedTextError.

#!/usr/bin/env python3
"""
Read a NestedText file and convert it to JSON.

usage:
 nestedtext-to-json [options] [<filename>]

options:
 -f, --force force overwrite of output file
 -d, --dedup de-duplicate keys in dictionaries

If <filename> is not given, NestedText input is taken from stdin and JSON output
is written to stdout.
"""

from docopt import docopt
from inform import done, fatal, os_error
from pathlib import Path
import json
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

def de_dup(key, state):
 if key not in state:
 state[key] = 1
 state[key] += 1
 return f"{key} — #{state[key]}"

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
on_dup = de_dup if cmdline['--dedup'] else None

try:
 if input_filename:
 input_path = Path(input_filename)
 data = nt.load(input_path, top='any', on_dup=de_dup)
 json_content = json.dumps(data, indent=4, ensure_ascii=False)
 output_path = input_path.with_suffix('.json')
 if output_path.exists():
 if not cmdline['--force']:
 fatal('file exists, use -f to force over-write.', culprit=output_path)
 output_path.write_text(json_content, encoding='utf-8')
 else:
 data = nt.load(sys.stdin, top='any', on_dup=de_dup)
 json_content = json.dumps(data, indent=4, ensure_ascii=False)
 sys.stdout.write(json_content + '\n')
except OSError as e:
 fatal(os_error(e))
except nt.NestedTextError as e:
 e.terminate()
except KeyboardInterrupt:
 done()

CSV to NestedText

This example implements a command-line utility that converts a CSV file to
NestedText. It demonstrates the use of the converters argument to
dumps(), which is used to cull empty dictionary fields.

#!/usr/bin/env python3
"""
Read a CSV file and convert it to NestedText.

usage:
 csv-to-nestedtext [options] [<filename>]

options:
 -n, --names first row contains column names
 -c, --cull remove empty fields (only for --names)
 -f, --force force overwrite of output file
 -i <n>, --indent <n> number of spaces per indent [default: 4]

If <filename> is not given, csv input is taken from stdin and NestedText output
is written to stdout.

If --names is specified, then the first line is assumed to hold the column/field
names with the remaining lines containing the data. In this case the output is
a list of dictionaries. Otherwise every line contains data and that data is
output as a list of lists.
"""

from docopt import docopt
from inform import cull, done, fatal, full_stop, os_error, warn
from pathlib import Path
import csv
import nestedtext as nt
import sys
sys.stdin.reconfigure(encoding='utf-8')
sys.stdout.reconfigure(encoding='utf-8')

cmdline = docopt(__doc__)
input_filename = cmdline['<filename>']
try:
 indent = int(cmdline['--indent'])
except Exception:
 warn('expected positive integer for indent.', culprit=cmdline['--indent'])
 indent = 4

strip dictionaries of empty fields if requested
converters = {dict: cull} if cmdline['--cull'] else {}

try:
 # read CSV content; from file or from stdin
 if input_filename:
 input_path = Path(input_filename)
 csv_content = input_path.read_text(encoding='utf-8')
 else:
 csv_content = sys.stdin.read()
 if cmdline['--names']:
 data = csv.DictReader(csv_content.splitlines())
 else:
 data = csv.reader(csv_content.splitlines())

 # convert to NestedText
 nt_content = nt.dumps(data, indent=indent, converters=converters) + "\n"

 # output NestedText content; to file or to stdout
 if input_filename:
 output_path = input_path.with_suffix('.nt')
 if output_path.exists():
 if not cmdline['--force']:
 fatal('file exists, use -f to force over-write.', culprit=output_path)
 output_path.write_text(nt_content, encoding='utf-8')
 else:
 sys.stdout.write(nt_content)

except OSError as e:
 fatal(os_error(e))
except nt.NestedTextError as e:
 e.terminate()
except csv.Error as e:
 fatal(full_stop(e), culprit=(input_filename, data.line_num))
except KeyboardInterrupt:
 done()

PyTest

This example highlights a PyTest [https://docs.pytest.org] package parametrize_from_file [https://parametrize-from-file.readthedocs.io] that allows you
to neatly separate your test code from your test cases; the test cases being
held in a NestedText file. Since test cases often contain code snippets, the
ability of NestedText to hold arbitrary strings without the need for quoting
or escaping results in very clean and simple test case specifications. Also,
use of the eval function in the test code allows the fields in the test cases
to be literal Python code.

The test cases:

test_expr.nt
test_substitution:
 -
 given: first second
 search: ^\s*(\w+)\s*(\w+)\s*$
 replace: \2 \1
 expected: second first
 -
 given: 4 * 7
 search: ^\s*(\d+)\s*([-+*/])\s*(\d+)\s*$
 replace: \1 \3 \2
 expected: 4 7 *

test_expression:
 -
 given: 1 + 2
 expected: 3
 -
 given: "1" + "2"
 expected: "12"
 -
 given: pathlib.Path("/") / "tmp"
 expected: pathlib.Path("/tmp")

And the corresponding test code:

test_misc.py
import parametrize_from_file
import re
import pathlib

@parametrize_from_file
def test_substitution(given, search, replace, expected):
 assert re.sub(search, replace, given) == expected

@parametrize_from_file
def test_expression(given, expected):
 assert eval(given) == eval(expected)

Pretty Printing

Besides being a readable file format, NestedText makes a reasonable display
format for structured data. This example further simplifies the output by
stripping leading multiline string tags.

>>> import nestedtext as nt
>>> import re
>>>
>>> def pp(data):
... try:
... text = nt.dumps(data, default=repr)
... print(re.sub(r'^(\s*)[>:][]?(.*)$', r'\1\2', text, flags=re.M))
... except nt.NestedTextError as e:
... e.report()

>>> addresses = nt.load('examples/address.nt')

>>> pp(addresses['Katheryn McDaniel'])
position: president
address:
 138 Almond Street
 Topeka, Kansas 20697
phone:
 cell: 1-210-555-5297
 home: 1-210-555-8470
email: KateMcD@aol.com
additional roles:
 - board member

Long Lines

One of the benefits of NestedText is that no escaping of special characters is
ever needed. However, you might find it helpful to add your own support for
removing escaped newlines in multi-line strings. Doing so would allow you to
keep your lines short in the source document so as to make them easier to
interpret in windows of limited width.

This example uses the pretty-print function from the previous example.

>>> import nestedtext as nt
>>> from textwrap import dedent
>>> from voluptuous import Schema

>>> document = dedent(r"""
... lorum ipsum:
... > Lorem ipsum dolor sit amet, \
... > consectetur adipiscing elit.
... > Sed do eiusmod tempor incididunt \
... > ut labore et dolore magna aliqua.
... """)

>>> def reverse_escaping(text):
... return text.replace("\\\n", "")

>>> schema = Schema({str: reverse_escaping})
>>> data = schema(nt.loads(document))
>>> pp(data)
lorum ipsum:
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Normalizing keys

With data files created by non-programmers it is often desirable to allow
a certain amount of flexibility in the keys. For example, you may wish to
ignore case and be tolerant of extra spacing. However, the end applications
often needs the keys to be specific values. It is possible to normalize the
keys using a schema, but this can interfere with error reporting. Imagine there
is an error in the value associated with a set of keys, if the keys have been
changed by the schema the keymap can no longer be used to convert the keys
into a line number for an error message. NestedText provides the
normalize_key argument to load() and loads() to address this
issue. It allows you to pass in a function that normalizes the keys before the
keymap is created, releasing the schema from that task.

The following contact look-up program demonstrates both the normalization of
keys and the associated error reporting. In this case, the first level of keys
contains the names of the contacts and should not be normalized. Keys at all
other levels are considered keywords and so should be normalized.

#!/usr/bin/env python3
"""
Display Contact Information

Usage:
 contact <name>
"""

from docopt import docopt
from inform import codicil, display, error, full_stop, indent, os_error, terminate
import nestedtext as nt
from voluptuous import Schema, Required, Any, MultipleInvalid
import re

contacts_file = "address.nt"

def normalize_key(key, parent_keys):
 if len(parent_keys) == 0:
 return key
 return ' '.join(key.lower().split())

def render_contact(data):
 text = nt.dumps(data, default=repr)
 return (re.sub(r'^(\s*)[>:]\s?(.*)$', r'\1\2', text, flags=re.M))

cmdline = docopt(__doc__)
name = cmdline['<name>']

try:
 # define structure of contacts database
 contacts_schema = Schema({
 str: {
 'position': str,
 'address': str,
 'phone': Required(Any({str:str},str)),
 'email': Required(Any({str:str},str)),
 'additional roles': Any(list,str),
 }
 })

 # read contacts database
 contacts = contacts_schema(
 nt.load(
 contacts_file,
 top = 'dict',
 normalize_key = normalize_key,
 keymap = (keymap:={})
)
)

 # display requested contact
 for fullname, contact_info in contacts.items():
 if name in fullname.lower():
 display(fullname)
 display(indent(render_contact(contact_info)))

except nt.NestedTextError as e:
 e.report()
except MultipleInvalid as e:
 for err in e.errors:
 kind = 'key' if 'key' in err.msg else 'value'
 keys = tuple(err.path)
 codicil = keymap[keys].as_line(kind) if keys in keymap else None
 error(
 full_stop(err.msg),
 culprit = (contacts_file, nt.join_keys(keys, keymap=keymap)),
 codicil = codicil
)
except OSError as e:
 error(os_error(e))
terminate()

This program takes a name as a command line argument and prints out the
corresponding address. It uses the pretty print idea from the previous section
to render the contact information. Voluptuous checks the validity of the
contacts database, which is shown next. Notice the variability in the keys given
in Fumiko’s entry:

Contact information for our officers

Katheryn McDaniel:
 position: president
 address:
 > 138 Almond Street
 > Topeka, Kansas 20697
 phone:
 cell: 1-210-555-5297
 home: 1-210-555-8470
 email: KateMcD@aol.com
 additional roles:
 - board member

Margaret Hodge:
 position: vice president
 address:
 > 2586 Marigold Lane
 > Topeka, Kansas 20682
 phone: 1-470-555-0398
 email: margaret.hodge@ku.edu
 additional roles:
 - new membership task force
 - accounting task force

Fumiko Purvis:
 Position: treasurer
 # Fumiko's term is ending at the end of the year.
 # She will be replaced by Merrill Eldridge.
 Address:
 > 3636 Buffalo Ave
 > Topeka, Kansas 20692
 Phone: 1-268-555-0280
 EMail: fumiko.purvis@hotmail.com
 Additional Roles:
 - accounting task force

Now, requesting Fumiko’s contact information gives:

Fumiko Purvis
 position: treasurer
 address:
 3636 Buffalo Ave
 Topeka, Kansas 20692
 phone: 1-268-555-0280
 email: fumiko.purvis@hotmail.com
 additional roles:
 - accounting task force

Notice that other than Fumiko’s name, the displayed keys are all normalized.

References

This example illustrates how one can implement references or macros in
NestedText. A reference allows you to define some content once and insert
that content multiple places in the document. This example also demonstrates
a slightly different way to implement validation and conversion on a per field
basis with voluptuous [https://github.com/alecthomas/voluptuous]. Finally, it includes key normalization, which allows
the keys to be case insensitive and contain white space even though the program
that uses the data prefers the keys to be lower case identifiers. The
normalize_key function passed to load() is used to transform the keys to
the desired form.

PostMortem [https://github.com/kenkundert/postmortem] is a program that generates a packet of information that is securely
shared with your dependents in case of your death. Only the settings processing
part of the package is shown here. Here is a configuration file that Odin might
use to generate packets for his wife and kids:

my GPG ids: odin@norse-gods.com
sign with: @ my gpg ids
name template: {name}-{now:YYMMDD}
estate docs:
 - ~/home/estate/trust.pdf
 - ~/home/estate/will.pdf
 - ~/home/estate/deed-valhalla.pdf

recipients:
 Frigg:
 email: frigg@norse-gods.com
 category: wife
 attach: @ estate docs
 networth: odin
 Thor:
 email: thor@norse-gods.com
 category: kids
 attach: @ estate docs
 Loki:
 email: loki@norse-gods.com
 category: kids
 attach: @ estate docs

Notice that estate docs is defined at the top level. It is not a PostMortem
setting; it simply defines a value that will be interpolated into a setting
later. The interpolation is done by specifying @ along with the name of the
reference as a value. So for example, in recipients attach is specified as
@ estate docs. This causes the list of estate documents to be used as
attachments. The same thing is done in sign with, which interpolates my gpg
ids.

Here is the code for validating and transforming the PostMortem settings:

#!/usr/bin/env python3

import nestedtext as nt
from pathlib import Path
from voluptuous import (
 Schema, Invalid, MultipleInvalid, Extra, Required, REMOVE_EXTRA
)
from pprint import pprint

Settings schema
First define some functions that are used for validation and coercion
def to_str(arg):
 if isinstance(arg, str):
 return arg
 raise Invalid('expected text')

def to_ident(arg):
 arg = to_str(arg)
 if arg.isidentifier():
 return arg
 raise Invalid('expected simple identifier')

def to_list(arg):
 if isinstance(arg, str):
 return arg.split()
 if isinstance(arg, dict):
 raise Invalid('expected list')
 return arg

def to_paths(arg):
 return [Path(p).expanduser() for p in to_list(arg)]

def to_email(arg):
 user, _, host = arg.partition('@')
 if '.' in host and '@' not in host:
 return arg
 raise Invalid('expected email address')

def to_emails(arg):
 return [to_email(e) for e in to_list(arg)]

def to_gpg_id(arg):
 try:
 return to_email(arg) # gpg ID may be an email address
 except Invalid:
 try:
 int(arg, base=16) # if not an email, it must be a hex key
 assert len(arg) >= 8 # at least 8 characters long
 return arg
 except (ValueError, AssertionError):
 raise Invalid('expected GPG id')

def to_gpg_ids(arg):
 return [to_gpg_id(i) for i in to_list(arg)]

def to_snake_case(key):
 return '_'.join(key.strip().lower().split())

define the schema for the settings file
schema = Schema(
 {
 Required('my_gpg_ids'): to_gpg_ids,
 'sign with': to_gpg_id,
 'avendesora_gpg_passphrase_account': to_str,
 'avendesora_gpg_passphrase_field': to_str,
 'name template': to_str,
 Required('recipients'): {
 Extra: {
 Required('category'): to_ident,
 Required('email'): to_emails,
 'gpg_id': to_gpg_id,
 'attach': to_paths,
 'networth': to_ident,
 }
 },
 },
 extra = REMOVE_EXTRA
)

this function implements references
def expand_settings(value):
 # allows macro values to be defined as a top-level setting.
 # allows macro reference to be found anywhere.
 if isinstance(value, str):
 value = value.strip()
 if value[:1] == '@':
 value = settings[to_snake_case(value[1:])]
 return value
 if isinstance(value, dict):
 return {k:expand_settings(v) for k, v in value.items()}
 if isinstance(value, list):
 return [expand_settings(v) for v in value]
 raise NotImplementedError(value)

def normalize_key(key, parent_keys):
 if parent_keys != ('recipients',):
 # normalize all keys except the recipient names
 return to_snake_case(key)
 return key

try:
 # Read settings
 config_filepath = Path('postmortem.nt')
 if config_filepath.exists():

 # load from file
 settings = nt.load(
 config_filepath,
 keymap = (keymap:={}),
 normalize_key = normalize_key
)

 # expand references
 settings = expand_settings(settings)

 # check settings and transform to desired types
 settings = schema(settings)

 # show the resulting settings
 pprint(settings)

except nt.NestedTextError as e:
 e.report()
except MultipleInvalid as e:
 for err in e.errors:
 kind = 'key' if 'key' in err.msg else 'value'
 culprit = nt.join_keys(err.path, keymap=keymap)
 print(f"ERROR: {config_filepath!s}: {culprit}: {err.msg}.")
 try:
 print(keymap[tuple(err.path)].as_line(kind))
 except KeyError:
 pass
except OSError as e:
 print(f"ERROR: {config_filepath!s}: {e!s}")

This code uses expand_settings to implement references, and it uses the
Voluptuous schema to clean and validate the settings and convert them to
convenient forms. For example, the user could specify attach as a string or
a list, and the members could use a leading ~ to signify a home directory.
Applying to_paths in the schema converts whatever is specified to a list and
converts each member to a pathlib [https://docs.python.org/3/library/pathlib.html] path with the ~ properly expanded.

Notice that the schema is defined in a different manner that the above examples.
In those, you simply state which type you are expecting for the value and you
use the Coerce function to indicate that the value should be cast to that type
if needed. In this example, simple functions are passed in that perform
validation and coercion as needed. This is a more flexible approach and allows
better control of the error messages.

Here are the processed settings:

{'my_gpg_ids': ['odin@norse-gods.com'],
 'recipients': {'Frigg': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'wife',
 'email': ['frigg@norse-gods.com'],
 'networth': 'odin'},
 'Loki': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'kids',
 'email': ['loki@norse-gods.com']},
 'Thor': {'attach': [PosixPath('/home/ken/home/estate/trust.pdf'),
 PosixPath('/home/ken/home/estate/will.pdf'),
 PosixPath('/home/ken/home/estate/deed-valhalla.pdf')],
 'category': 'kids',
 'email': ['thor@norse-gods.com']}}}

Common mistakes

When load() or loads() complains of errors it is important to
look both at the line fingered by the error message and the one above it. The
line that is the target of the error message might by an otherwise valid
NestedText line if it were not for the line above it. For example, consider
the following example:

Example:

>>> import nestedtext as nt

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address: Home
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content)
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation.
An indent may only follow a dictionary or list item that does not
already have a value.
 4 ❬ address: Home❭
 5 ❬ > 3636 Buffalo Ave❭
 △

Notice that the complaint is about line 5, but problem stems from line 4 where
Home gave a value to address. With a value specified for address, any
further indentation on line 5 indicates a second value is being specified for
address, which is illegal.

A more subtle version of this same error follows:

Example:

>>> content = """
... treasurer:
... name: Fumiko Purvis
... address:␣␣
... > 3636 Buffalo Ave
... > Topeka, Kansas 20692
... """

>>> try:
... data = nt.loads(content.replace('␣␣', ' '))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(e.get_codicil()[0])
invalid indentation.
An indent may only follow a dictionary or list item that does not
already have a value, which in this case consists only of whitespace.
 4 ❬ address: ❭
 5 ❬ > 3636 Buffalo Ave❭
 △

Notice the ␣␣ that follows address in content. These are replaced by
2 spaces before content is processed by loads. Thus, in this case there is
an extra space at the end of line 4. Anything beyond the: :␣ is considered
the value for address, and in this case that is the single extra space
specified at the end of the line. This extra space is taken to be the value of
address, making the multiline string in lines 5 and 6 a value too many.

This mistake is easier to see in advance if you configure your editor to show
trailing whitespace. To do so in Vim, add:

set listchars=trail:␣

to your ~/.vimrc file.

Python API

	dumps

	dump

	loads

	load

	Location

	Utilities

	NestedTextError

dumps

	
nestedtext.dumps(obj, *, width=0, inline_level=0, sort_keys=False, indent=4, converters=None, default=None)

	Recursively convert object to NestedText string.

	Parameters

	
	obj – The object to convert to NestedText.

	width (int) – Enables inline lists and dictionaries if greater than zero and if
resulting line would be less than or equal to given width.

	inline_level (int) – Recursion depth must be equal to this value or greater to be
eligible for inlining.

	sort_keys (bool or func) – Dictionary items are sorted by their key if sort_keys is true.
If a function is passed in, it is used as the key function.

	indent (int) – The number of spaces to use to represent a single level of
indentation. Must be one or greater.

	converters (dict) – A dictionary where the keys are types and the values are converter
functions (functions that take an object and return it in a form
that can be processed by NestedText). If a value is False, an
unsupported type error is raised.

An object may provide its own converter by defining the
__nestedtext_converter__ attribute. It may be False, or it may
be a method that converts the object to a supported data type for
NestedText. A matching converter specified in the converters
argument dominates over this attribute.

	default (func or “strict”) – The default converter. Use to convert otherwise unrecognized objects
to a form that can be processed. If not provided an error will be
raised for unsupported data types. Typical values are repr or
str. If “strict” is specified then only dictionaries, lists,
strings, and those types that have converters are allowed. If
default is not specified then a broader collection of value types
are supported, including None, bool, int, float, and list-
and dict-like objects. In this case Booleans are rendered as
“True” and “False” and None is rendered as an empty string. If
default is a function, it acts as the default converter. If
it raises a TypeError, the value is reported as an
unsupported type.

	_level (int) – The number of indentation levels. When dumps is invoked recursively
this is used to increment the level and so the indent. This argument
is use internally and should not be specified by the user.

	Returns

	The NestedText content without a trailing newline. NestedText files
should end with a newline, but unlike dump(), this function does
not output that newline. You will need to explicitly add that newline
when writing the output dumps() to a file.

	Raises

	NestedTextError – if there is a problem in the input data.

Examples

>>> import nestedtext as nt

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
name: Kristel Templeton
sex: female
age: 74

The NestedText format only supports dictionaries, lists, and strings.
By default, dumps is configured to be rather forgiving, so it will
render many of the base Python data types, such as None, bool,
int, float and list-like types such as tuple and set by
converting them to the types supported by the format. This implies that
a round trip through dumps and loads could result in the types of
values being transformed. You can restrict dumps to only supporting
the native types of NestedText by passing default=”strict” to
dumps. Doing so means that values that are not dictionaries, lists,
or strings generate exceptions.

>>> data = {'key': 42, 'value': 3.1415926, 'valid': True}

>>> try:
... print(nt.dumps(data))
... except nt.NestedTextError as e:
... print(str(e))
key: 42
value: 3.1415926
valid: True

>>> try:
... print(nt.dumps(data, default='strict'))
... except nt.NestedTextError as e:
... print(str(e))
key: unsupported type (int).

Alternatively, you can specify a function to default, which is used
to convert values to recognized types. It is used if no suitable
converter is available. Typical values are str and repr.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __repr__(self):
... return f'Color({self.color!r})'
... def __str__(self):
... return self.color

>>> data['house'] = Color('red')
>>> print(nt.dumps(data, default=repr))
key: 42
value: 3.1415926
valid: True
house: Color('red')

>>> print(nt.dumps(data, default=str))
key: 42
value: 3.1415926
valid: True
house: red

If Color is consistently used with NestedText, you can include the
converter in Color itself.

>>> class Color:
... def __init__(self, color):
... self.color = color
... def __nestedtext_converter__(self):
... return self.color.title()

>>> data['house'] = Color('red')
>>> print(nt.dumps(data))
key: 42
value: 3.1415926
valid: True
house: Red

You can also specify a dictionary of converters. The dictionary maps the
object type to a converter function.

>>> class Info:
... def __init__(self, **kwargs):
... self.__dict__ = kwargs

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: lambda f: f'{f:0.3}',
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> data['attributes'] = Info(readable=True, writable=False)

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
key: 0x2a
value: 3.14
valid: yes
house: red
attributes:
 readable: yes
 writable: no

The above example shows that Color in the converters argument
dominates over the __nestedtest__converter__ class.

If the dictionary maps a type to None, then the default behavior is
used for that type. If it maps to False, then an exception is raised.

>>> converters = {
... bool: lambda b: 'yes' if b else 'no',
... int: hex,
... float: False,
... Color: lambda c: c.color,
... Info: lambda i: i.__dict__,
... }

>>> try:
... print(nt.dumps(data, converters=converters))
... except nt.NestedTextError as e:
... print(str(e))
value: unsupported type (float).

converters need not actually change the type of a value, it may simply
transform the value. In the following example, converters is used to
transform dictionaries by removing empty dictionary fields. It is also
converts dates and physical quantities to strings.

>>> import arrow
>>> from inform import cull
>>> import quantiphy

>>> class Dollars(quantiphy.Quantity):
... units = '$'
... form = 'fixed'
... prec = 2
... strip_zeros = False
... show_commas = True

>>> converters = {
... dict: cull,
... arrow.Arrow: lambda d: d.format('D MMMM YYYY'),
... quantiphy.Quantity: lambda q: str(q)
... }

>>> transaction = dict(
... date = arrow.get('2013-05-07T22:19:11.363410-07:00'),
... description = "Incoming wire from Publisher's Clearing House",
... debit = 0,
... credit = Dollars(12345.67)
...)

>>> print(nt.dumps(transaction, converters=converters))
date: 7 May 2013
description: Incoming wire from Publisher's Clearing House
credit: $12,345.67

Both default and converters may be used together. converters has
priority over the built-in types and default. When a function is
specified as default, it is always applied as a last resort.

dump

	
nestedtext.dump(obj, dest, **kwargs)

	Write the NestedText representation of the given object to the given file.

	Parameters

	
	obj – The object to convert to NestedText.

	dest (str, os.PathLike, io.TextIOBase) – The file to write the NestedText content to. The file can be
specified either as a path (e.g. a string or a pathlib.Path) or
as a text IO instance (e.g. an open file). If a path is given, the
will be opened, written, and closed. If an IO object is given, it
must have been opened in a mode that allows writing (e.g.
open(path, 'w')), if applicable. It will be written and not
closed.

The name used for the file is arbitrary but it is tradition to use a
.nt suffix. If you also wish to further distinguish the file type
by giving the schema, it is recommended that you use two suffixes,
with the suffix that specifies the schema given first and .nt given
last. For example: flicker.sig.nt.

	kwargs – See dumps() for optional arguments.

	Returns

	The NestedText content with a trailing newline. This differs from
dumps(), which does not add the trailing newline.

	Raises

	
	NestedTextError – if there is a problem in the input data.

	OSError – if there is a problem opening the file.

Examples

This example writes to a pointer to an open file.

>>> import nestedtext as nt
>>> from inform import fatal, os_error

>>> data = {
... 'name': 'Kristel Templeton',
... 'sex': 'female',
... 'age': '74',
... }

>>> try:
... with open('data.nt', 'w', encoding='utf-8') as f:
... nt.dump(data, f)
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

This example writes to a file specified by file name. In general, the
file name and extension are arbitrary. However, by convention a
‘.nt’ suffix is generally used for NestedText files.

>>> try:
... nt.dump(data, 'data.nt')
... except nt.NestedTextError as e:
... e.terminate()
... except OSError as e:
... fatal(os_error(e))

loads

	
nestedtext.loads(content, top='dict', *, source=None, on_dup=None, keymap=None, normalize_key=None)

	Loads NestedText from string.

	Parameters

	
	content (str) – String that contains encoded data.

	top (str) – Top-level data type. The NestedText format allows for a dictionary,
a list, or a string as the top-level data container. By specifying
top as “dict”, “list”, or “str” you constrain both the type of
top-level container and the return value of this function. By
specifying “any” you enable support for all three data types, with
the type of the returned value matching that of top-level container
in content. As a short-hand, you may specify the dict, list,
str, and any built-ins rather than specifying top with a
string.

	source (str or Path) – If given, this string is attached to any error messages as the
culprit. It is otherwise unused. Is often the name of the file that
originally contained the NestedText content.

	on_dup (str or func) – Indicates how duplicate keys in dictionaries should be handled.
Specifying “error” causes them to raise exceptions (the default
behavior). Specifying “ignore” causes them to be ignored (first
wins). Specifying “replace” results in them replacing earlier items
(last wins). By specifying a function, the keys can be
de-duplicated. This call-back function returns a new key and takes
two arguments:

	key:
	The new key (duplicates an existing key).

	state:
	A dictionary containing other possibly helpful information:

	value:
	The value associated with the duplicate key.

	dictionary:
	The entire dictionary as it is at the moment the duplicate
key is found. You should not change it.

	keys:
	The keys that identify the dictionary.

This dictionary is created as loads is called and deleted as
it returns. Any values placed in it are retained and available
on subsequent calls to this function during the load operation.

This function should return a new key. If the key duplicates an
existing key, the value associated with that key is replaced. If
None is returned, this key is ignored. If a KeyError is
raised, the duplicate key is reported as an error.

Be aware that de-duplication does not play nicely with keymaps when
used to access values using the original keys as it is not possible
to use the original keys to distinguish between the duplicate
key-sets. If an error occurs in the value of one of the duplicates,
it may be reported as occurring in one of the others.

	keymap (dict) – Specify an empty dictionary or nothing at all for the value of
this argument. If you give an empty dictionary it will be filled
with location information for the values that are returned. Upon
return the dictionary maps a tuple containing the keys for the value
of interest to the location of that value in the NestedText source
document. The location is contained in a Location object.
You can access the line and column number using the
Location.as_tuple() method, and the line that contains the
value annotated with its location using the Location.as_line()
method.

	normalize_key (func) – A function that takes two arguments; the original key for a value
and the tuple of normalized keys for its parent values. It then
transforms the given key into the desired normalized form. Only
called on dictionary keys, so the key will always be a string.

	Returns

	The extracted data. The type of the return value is specified by the
top argument. If top is “any”, then the return value will match that of
top-level data container in the input content. If content is empty, an
empty data value of the type specified by top is returned. If top is
“any” None is returned.

	Raises

	NestedTextError – if there is a problem in the NextedText document.

Examples

A NestedText document is specified to loads in the form of a string:

>>> import nestedtext as nt

>>> contents = """
... name: Kristel Templeton
... sex: female
... age: 74
... """

>>> try:
... data = nt.loads(contents, "dict")
... except nt.NestedTextError as e:
... e.terminate()

>>> print(data)
{'name': 'Kristel Templeton', 'sex': 'female', 'age': '74'}

loads() takes an optional argument, source. If specified, it is
added to any error messages. It is often used to designate the source
of NestedText document. For example, if contents were read from a
file, source would be the file name. Here is a typical example of
reading NestedText from a file:

>>> filename = 'examples/duplicate-keys.nt'
>>> try:
... with open(filename, encoding='utf-8') as f:
... addresses = nt.loads(f.read(), source=filename)
... except nt.NestedTextError as e:
... print(e.render())
... print(*e.get_codicil(), sep="\n")
examples/duplicate-keys.nt, 5: duplicate key: name.
 4 ❬name:❭
 5 ❬name:❭
 △

Notice in the above example the encoding is explicitly specified as
‘utf-8’. NestedText files should always be read and written using
utf-8 encoding.

The following examples demonstrate the various ways of handling
duplicate keys:

>>> content = """
... key: value 1
... key: value 2
... key: value 3
... name: value 4
... name: value 5
... """

>>> print(nt.loads(content))
Traceback (most recent call last):
...
nestedtext.NestedTextError: 3: duplicate key: key.

>>> print(nt.loads(content, on_dup='ignore'))
{'key': 'value 1', 'name': 'value 4'}

>>> print(nt.loads(content, on_dup='replace'))
{'key': 'value 3', 'name': 'value 5'}

>>> def de_dup(key, state):
... if key not in state:
... state[key] = 1
... state[key] += 1
... return f"{key} — #{state[key]}"

>>> print(nt.loads(content, on_dup=de_dup))
{'key': 'value 1', 'key — #2': 'value 2', 'key — #3': 'value 3', 'name': 'value 4', 'name — #2': 'value 5'}

load

	
nestedtext.load(f, top='dict', *, on_dup=None, keymap=None, normalize_key=None)

	Loads NestedText from file or stream.

Is the same as loads() except the NextedText is accessed by reading
a file rather than directly from a string. It does not keep the full
contents of the file in memory and so is more memory efficient with large
files.

	Parameters

	
	f (str, os.PathLike, io.TextIOBase, collections.abc.Iterator) – The file to read the NestedText content from. This can be
specified either as a path (e.g. a string or a pathlib.Path),
as a text IO object (e.g. an open file), or as an iterator. If a
path is given, the file will be opened, read, and closed. If an IO
object is given, it will be read and not closed; utf-8 encoding
should be used.. If an iterator is given, it should generate full
lines in the same manner that iterating on a file descriptor would.

	kwargs – See loads() for optional arguments.

	Returns

	The extracted data.
See loads() description of the return value.

	Raises

	
	NestedTextError – if there is a problem in the NextedText document.

	OSError – if there is a problem opening the file.

Examples

Load from a path specified as a string:

>>> import nestedtext as nt
>>> print(open('examples/groceries.nt').read())
groceries:
 - Bread
 - Peanut butter
 - Jam

>>> nt.load('examples/groceries.nt')
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from a pathlib.Path:

>>> from pathlib import Path
>>> nt.load(Path('examples/groceries.nt'))
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Load from an open file object:

>>> with open('examples/groceries.nt') as f:
... nt.load(f)
...
{'groceries': ['Bread', 'Peanut butter', 'Jam']}

Location

	
class nestedtext.Location(line=None, col=None, key_line=None, key_col=None)

	Holds information about the location of a token.

Returned from load() and loads() as the values in a keymap.
Objects of this class holds the line and column numbers of the key and value
tokens.

	
as_line(kind='value')

	Returns a string containing two lines that identify the token in
context. The first line contains the line number and text of the line
that contains the token. The second line contains a pointer to the
token.

	Parameters

	kind (str) – Specify either “key” or “value” depending on which token is
desired.

	
as_tuple(kind='value')

	Returns the location of either the value or the key token as a tuple
that contains the line number and the column number. The line and
column numbers are 0 based.

	Parameters

	kind (str) – Specify either “key” or “value” depending on which token is
desired.

Utilities

Extras that are useful when using NestedText.

	
nestedtext.get_value_from_keys(obj, keys)

	Get value from keys.

	Parameters

	
	obj – Your data set as returned by load() or loads().

	keys – A tuple of keys taken from a keymap.

	Returns

	The value that corresponds to a tuple of keys from a keymap.

Examples

>>> import nestedtext as nt

>>> contents = """
... names:
... given: Fumiko
... surname: Purvis
... """

>>> data = nt.loads(contents, 'dict')

>>> get_value_from_keys(data, ('names', 'given'))
'Fumiko'

	
nestedtext.get_lines_from_keys(obj, keys, keymap, kind='value', sep=None)

	Get line numbers from normalized keys.

This function returns the line numbers of the key or value selected by
keys. It is used when reporting an error in a value that is possibly a
multiline string. If the location contained in a keymap were used the user
would only see the line number of the first line, which may confuse some
users into believing the error is actually contained in the first line.
Using this function gives both the starting and ending line number so the
user focuses on the whole string and not just the first line.

If sep is given, either one line number or both the beginning and ending
line numbers are returned, joined with the separator. In this case the line
numbers start from line 1.

If sep is not given, the line numbers are returned as a tuple containing a
pair of integers that is tailored to be suitable to be arguments to the
Python slice function (see example). The beginning line number and 1 plus
the ending line number is returned as a tuple. In this case the line
numbers start at 0.

If the value is requested and it is a composite (a dictionary or list), the
line on which it ends cannot be easily determined, so the value is treated
as if it consists of a single line. This is considered tolerable as it is
expected that this function is primarily used to return the line number of
leaf values, which are always strings.

	Parameters

	
	obj – Your data set as returned by load() or loads().

	keys – The collection of keys that identify a value in the dataset.

	keymap – The keymap returned from load() or loads().

	kind (str) – Specify either “key” or “value” depending on which token is
desired.

	sep – The separator string. If given a string is returned and sep is
inserted between two line numbers. Otherwise a tuple is returned.

Example

>>> import nestedtext as nt

>>> doc = '''
... key:
... > this is line 1
... > this is line 2
... > this is line 3
... '''

>>> data = nt.loads(doc, keymap=(keymap:={}))
>>> keys = ("key",)
>>> lines = nt.get_lines_from_keys(data, keys, keymap, sep="-")
>>> text = doc.splitlines()
>>> print(
... f"Lines {lines}:",
... *text[slice(*nt.get_lines_from_keys(data, keys, keymap))],
... sep="\n"
...)
Lines 3-5:
 > this is line 1
 > this is line 2
 > this is line 3

	
nestedtext.get_original_keys(keys, keymap, strict=False)

	Get original keys from normalized keys.

This function is used when the normalize_key argument is used with
load() or loads() to transform the keys to a standard form.
Given a set of normalized keys that point to a particular value in the
returned dataset, this function returns the original keys for that value.

	Parameters

	
	keys – The collection of normalized keys that identify a value in the
dataset.

	keymap – The keymap returned from load() or loads().

	strict – If true, a KeyError is raised if the given keys are not found
in keymap. Otherwise, the given normalized keys will be returned
rather than the original keys. This is helpful when reporting
errors on required keys that do not exist in the data set. Since
they are not in the dataset, the original keys are not available.

	Returns

	A tuple containing the original keys names.

Examples

>>> import nestedtext as nt

>>> contents = """
... Names:
... Given: Fumiko
... """

>>> def normalize_key(key, keys):
... return key.lower()

>>> data = nt.loads(contents, 'dict', normalize_key=normalize_key, keymap=(keymap:={}))

>>> print(get_original_keys(('names', 'given'), keymap))
('Names', 'Given')

>>> print(get_original_keys(('names', 'surname'), keymap))
('Names', 'surname')

>>> keys = get_original_keys(('names', 'surname'), keymap, strict=True)
Traceback (most recent call last):
...
KeyError: ('names', 'surname')

	
nestedtext.join_keys(keys, sep=', ', keymap=None, strict=False)

	Joins the keys into a string.

	Parameters

	
	keys – A tuple of keys.

	sep – The separator string. It is inserted between each key during the join.

	keymap – The keymap returned from load() or loads(). It is
optional. If given the given keys are converted to the original keys
before the joining.

	strict – If true, a KeyError is raised if the given keys are not found
in keymap. Otherwise, the given normalized keys will be returned
rather than the original keys. This is helpful when reporting
errors on required keys that do not exist in the data set. Since
they are not in the dataset, the original keys are not available.

	Returns

	A string containing the joined keys.

Examples

>>> import nestedtext as nt

>>> contents = """
... Names:
... Given: Fumiko
... """

>>> def normalize_key(key, keys):
... return key.lower()

>>> data = nt.loads(contents, 'dict', normalize_key=normalize_key, keymap=(keymap:={}))

>>> join_keys(('names', 'given'))
'names, given'

>>> join_keys(('names', 'given'), sep='.')
'names.given'

>>> join_keys(('names', 'given'), keymap=keymap)
'Names, Given'

>>> join_keys(('names', 'surname'), keymap=keymap)
'Names, surname'

NestedTextError

	
exception nestedtext.NestedTextError(*args, **kwargs)

	The load and dump functions all raise NestedTextError when they
discover an error. NestedTextError subclasses both the Python ValueError
and the Error exception from Inform. You can find more documentation on
what you can do with this exception in the Inform documentation [https://inform.readthedocs.io/en/stable/api.html#exceptions].

All exceptions provide the following attributes:

	Parameters

	
	problematic (The exception arguments. A tuple that usually contains the) –

	value. –

	template:
	The possibly parameterized text used for the error message.

Exceptions raised by the loads() or load() functions provide
the following additional attributes:

	source:
	The source of the NestedText content, if given. This is often a
filename.

	line:
	The text of the line of NestedText content where the problem was found.

	prev_line:
	The text of the meaningful line immediately before where the problem was
found. This will not be a comment or blank line.

	lineno:
	The number of the line where the problem was found. Line numbers are
zero based except when included in messages to the end user.

	colno:
	The number of the character where the problem was found on line.
Column numbers are zero based.

	codicil:
	The line that contains the error decorated with the location of the
error.

The exception culprit is the tuple that indicates where the error was found.
With exceptions from loads() or load(), the culprit consists
of the source name, if available, and the line number. With exceptions from
dumps() or dump(), the culprit consists of the keys that
lead to the problematic value.

As with most exceptions, you can simply cast it to a string to get a
reasonable error message.

>>> from textwrap import dedent
>>> import nestedtext as nt

>>> content = dedent("""
... name1: value1
... name1: value2
... name3: value3
... """).strip()

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(str(e))
2: duplicate key: name1.

You can also use the report method to print the message directly. This is
appropriate if you are using inform for your messaging as it follows
inform’s conventions:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.report()
error: 2: duplicate key: name1.
 ❬name1: value2❭
 △

The terminate method prints the message directly and exits:

>> try:
.. print(nt.loads(content))
.. except nt.NestedTextError as e:
.. e.terminate()
error: 2: duplicate key: name1.
 ❬name1: value2❭
 △

With exceptions generated from load() or loads() you may see
extra lines at the end of the message that show the problematic lines if
you have the exception report itself as above. Those extra lines are
referred to as the codicil and they can be very helpful in illustrating the
actual problem. You do not get them if you simply cast the exception to a
string, but you can access them using NestedTextError.get_codicil().
The codicil or codicils are returned as a tuple. You should join them with
newlines before printing them.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... print(e.get_message())
... print(*e.get_codicil(), sep="\n")
duplicate key: name1.
 1 ❬name1: value1❭
 2 ❬name1: value2❭
 △

Note the ❬ and ❭ characters in the codicil. They delimit the extent of the
text on each line and help you see troublesome leading or trailing white
space.

Exceptions produced by NestedText contain a template attribute that
contains the basic text of the message. You can change this message by
overriding the attribute using the template argument when using report,
terminate, or render. render is like casting the exception to a
string except that allows for the passing of arguments. For example, to
convert a particular message to Spanish, you could use something like the
following.

>>> try:
... print(nt.loads(content))
... except nt.NestedTextError as e:
... template = None
... if e.template == 'duplicate key: {}.':
... template = 'llave duplicada: {}.'
... print(e.render(template=template))
2: llave duplicada: name1.

	
get_message(template=None)

	Get exception message.

	Parameters

	template (str) – This argument is treated as a format string and is passed both
the unnamed and named arguments. The resulting string is treated
as the message and returned.

If not specified, the template keyword argument passed to the
exception is used. If there was no template argument, then the
positional arguments of the exception are joined using sep and
that is returned.

	Returned:
	The formatted message without the culprits.

	
get_culprit(culprit=None)

	Get the culprits.

Culprits are extra pieces of information attached
to an error that help to identify the source of the error. For example,
file name and line number where the error was found are often attached
as culprits.

Return the culprit as a tuple. If a culprit is specified as an
argument, it is appended to the exception’s culprit without modifying it.

	Parameters

	culprit (string, number or tuple of strings and numbers) – A culprit or collection of culprits that is appended to the
return value without modifying the cached culprit.

	Returns

	The culprit argument is prepended to the exception’s culprit and the
combination is returned. The return value is always in the form of a
tuple even if there is only one component.

	
get_codicil(codicil=None)

	Get the codicils.

A codicil is extra text attached to an error that can clarify the error
message or to give extra context.

Return the codicil as a tuple. If a codicil is specified as an
argument, it is appended to the exception’s codicil without modifying it.

	Parameters

	codicil (string or tuple of strings) – A codicil or collection of codicils that is appended to the
return value without modifying the cached codicil.

	Returns

	The codicil argument is appended to the exception’s codicil and the
combination is returned. The return value is always in the form of a
tuple even if there is only one component.

	
report(**new_kwargs)

	Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

	
terminate(**new_kwargs)

	Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

	
reraise(**new_kwargs)

	Re-raise the exception.

	
render(template=None)

	Convert exception to a string for use in an error message.

	Parameters

	template (str) – This argument is treated as a format string and is passed both
the unnamed and named arguments. The resulting string is treated
as the message and returned.

If not specified, the template keyword argument passed to the
exception is used. If there was no template argument, then the
positional arguments of the exception are joined using sep and
that is returned.

	Returned:
	The formatted message with any culprits.

Releases

This page documents the changes in the Python implementation of NestedText.
Changes to the NestedText language are shown in Language changes.

Latest development version

Version: 3.4.0

Released: 2022-06-15

v3.4 (2022-06-15)

	improved the on_dup parameter to load() and loads().

	added strict argument to join_keys().

Warning

Be aware that the new version of the on_dup parameter are not compatible
with previous versions.

v3.3 (2022-06-07)

	add normalize_key argument to load() and loads().

	added utility functions for operating on keys and keymaps:
- get_value_from_keys()
- get_lines_from_keys()
- get_original_keys()
- join_keys()

	None passed as key is now converted to an empty string rather than “None”.

v3.2 (2022-01-17)

	add circular reference detection and reporting.

v3.1 (2021-07-23)

	change error reporting for dumps() and dump() functions;
culprit is now the keys rather than the value.

v3.0 (2021-07-17)

	Deprecate trailing commas in inline lists and dictionaries.

	Adds keymap argument to load() and loads().

	Adds inline_level argument to dump() and dumps().

	Implement on_dup argument to load() and loads() in inline
dictionaries.

	Apply convert and default arguments of dump() and dumps() to
dictionary keys.

Warning

Be aware that aspects of this version are not backward compatible.
Specifically, trailing commas are no longer supported in inline dictionaries
and lists. In addition, [] now represents a list that contains an
empty string, whereas previously it represented an empty list.

v2.0 (2021-05-28)

	Deprecate quoted keys.

	Add multiline keys to replace quoted keys.

	Add inline lists and dictionaries.

	Move from renderers to converters in dump() and dumps().
Both allow you to support arbitrary data types. With renderers you
provide functions that are responsible for directly creating the text to
be inserted in the NestedText output. This can be complicated and error
prone. With converters you instead convert the object to a known
NestedText data type (dict, list, string, …) and the dump function
automatically formats it appropriately.

	Restructure documentation.

Warning

Be aware that aspects of this version are not backward compatible.

	It no longer supports quoted dictionary keys.

	The renderers argument to dump() and dumps() has been replaced by converters.

	It no longer allows one to specify level in dump() and dumps().

v1.3 (2021-01-02)

	Move the test cases to a submodule.

Note

When cloning the NestedText repository you should use the –recursive
flag to get the official_tests submodule:

git clone --recursive https://github.com/KenKundert/nestedtext.git

When updating an existing repository, you need to initialize the
submodule after doing a pull:

git submodule update --init --remote tests/official_tests

This only need be done once.

v1.2 (2020-10-31)

	Treat CR LF, CR, or LF as a line break.

	Always quote keys that start with a quote.

v1.1 (2020-10-13)

	Add ability to specify return type of load() and loads().

	Quoted keys are now less restricted.

	Empty dictionaries and lists are rejected by dump() and
dumps() except as top-level object if default argument is
specified as ‘strict’.

Warning

Be aware that this version is not fully backward compatible. Unlike
previous versions, this version allows you to restrict the type of the
return value of the load() and loads() functions, and the
default is ‘dict’. The previous behavior is still supported, but you
must explicitly specify top=’any’ as an argument.

This change results in a simpler return value from load() and
loads() in most cases. This substantially reduces the chance of
coding errors. It was noticed that it was common to simply assume that
the top-level was a dictionary when writing code that used these
functions, which could result in unexpected errors when users
hand-create the input data. Specifying the return value eliminates this
type of error.

There is another small change that is not backward compatible. The
source argument to these functions is now a keyword only argument.

v1.0 (2020-10-03)

	Production release.

Index

 A
 | D
 | G
 | J
 | L
 | N
 | R
 | T

A

 	
 	as_line() (nestedtext.Location method)

 	
 	as_tuple() (nestedtext.Location method)

D

 	
 	dump() (in module nestedtext)

 	
 	dumps() (in module nestedtext)

G

 	
 	get_codicil() (nestedtext.NestedTextError method)

 	get_culprit() (nestedtext.NestedTextError method)

 	get_lines_from_keys() (in module nestedtext)

 	
 	get_message() (nestedtext.NestedTextError method)

 	get_original_keys() (in module nestedtext)

 	get_value_from_keys() (in module nestedtext)

J

 	
 	join_keys() (in module nestedtext)

L

 	
 	load() (in module nestedtext)

 	
 	loads() (in module nestedtext)

 	Location (class in nestedtext)

N

 	
 	NestedTextError

R

 	
 	render() (nestedtext.NestedTextError method)

 	
 	report() (nestedtext.NestedTextError method)

 	reraise() (nestedtext.NestedTextError method)

T

 	
 	terminate() (nestedtext.NestedTextError method)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 NestedText: A Human Friendly Data Format

 		
 Philosophy

 		
 Alternatives

 		
 JSON

 		
 YAML

 		
 TOML or INI

 		
 CSV or TSV

 		
 Really, Only Strings?

 		
 Language introduction

 		
 Dictionaries

 		
 Lists

 		
 Strings

 		
 Comments

 		
 Nesting

 		
 NestedText Files

 		
 Language reference

 		
 Minimal NestedText

 		
 Related projects

 		
 Reference Material

 		
 nestedtext docs

 		
 nestedtext source

 		
 nestedtext_tests

 		
 Implementations

 		
 nestex

 		
 nestedtext-ruby

 		
 janet-nested-text

 		
 zig-nestedtext

 		
 Utilities

 		
 parametrize from file

 		
 vim-nestedtext

 		
 visual studio

 		
 Language changes

 		
 Latest development version

 		
 v3.4 (2022-06-15)

 		
 v3.3 (2022-06-07)

 		
 v3.2 (2022-01-17)

 		
 v3.1 (2021-07-23)

 		
 v3.0 (2021-07-17)

 		
 v2.0 (2021-05-28)

 		
 v1.3 (2021-01-02)

 		
 v1.2 (2020-10-31)

 		
 v1.1 (2020-10-13)

 		
 v1.0 (2020-10-03)

 		
 Basic use

 		
 Installation

 		
 NestedText Reader

 		
 NestedText Writer

 		
 Schemas

 		
 Examples

 		
 Validate with Voluptuous

 		
 Validate with Pydantic

 		
 JSON to NestedText

 		
 NestedText to JSON

 		
 CSV to NestedText

 		
 PyTest

 		
 Pretty Printing

 		
 Long Lines

 		
 Normalizing keys

 		
 References

 		
 Common mistakes

 		
 Python API

 		
 dumps

 		
 dump

 		
 loads

 		
 load

 		
 Location

 		
 Utilities

 		
 NestedTextError

 		
 Releases

 		
 Latest development version

 		
 v3.4 (2022-06-15)

 		
 v3.3 (2022-06-07)

 		
 v3.2 (2022-01-17)

 		
 v3.1 (2021-07-23)

 		
 v3.0 (2021-07-17)

 		
 v2.0 (2021-05-28)

 		
 v1.3 (2021-01-02)

 		
 v1.2 (2020-10-31)

 		
 v1.1 (2020-10-13)

 		
 v1.0 (2020-10-03)

